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0 Introduction

What makes Topological supersymmetric models become Topological string theory is grav-
ity shows up, and what makes topological string theory simple and powerful is its correlation
function is simple enough to calculate to arbitrary loops, up to a ambiguity.

Holomorphic Anomaly Equation(HAE) is the proper relation describing this process,
we can even say that almost all calculable stringy effects of Topological string comes from
HAE. We know properties like mirror symmetry or chiral ring is merely a supersymmetric
effect, and after we extend our theory to string theory, many of them persists but some of
them changes, those changes are coded in HAE.

This note is organized as follow: We first revisit the B model without gravity in
Chapl, a very short remind of special geometry is in the appendix. We derive the HAE in
Chap2. We then solve the HAE and make some comments of its properties in Chap3 and
Chap4. We mainly follows BCOV’s long paper (they have two), other references are in the
bibliography part.

1 Twisted N = 2 revisited

We shall quickly revisit the properties of N' = 2 theory, properties of {t* equation,and
couple it to topological gravity, where we will see why Calabi-Yau threefold is special and
essential for our definition of B model.

We will use the notation of the original BCOV paper,which may have some difference
with other references, but results are the same. It’s well known that mirror symmetry
can be manifested in N' = 2 (more specifically ,N = (2,2)), but in order to discover
more property of mirror symmetry and made the theory a string theory, we consider the
superconformal A" = 2 (specifically, N' = (2,2)) now.

1.1 Vacuum geometry and twisting of N/ = 2 theories
1.1.1 Topological twist and Chiral ring

Superconformal A/ = 2 theories have four supercharges and two U(1) currents, as the R
symmetry
G+, G+, 0, (1.1)

where we note left ones as the one without bar, right with bar ,satisfying these relation
(left, but right are similar)

(GE)? =0
{G*,G™} =2H],
[GE Hr) =0 (1.2)

and we have two equivalent choice of composed supercharge as cohomology operator, as
the A and B model

Q=G"+G" Q=G"+G (1.3)



we can define the cohomology field theory

[@Q,¢] =0 ¢~¢+[Q,A] (1.4)

In our notation, satisfying this condition for @ is named (c,c¢) and Q2 is named (c,a),
we should remember QI and Q;(named as (a,a),(a,c)) gives the isomorphic spectrum of
fields, only differ by a J — —.J, so we can only consider Q1 for simplicity. A = (2, 2) chiral
primary operator has relation between of conformal weight and R-symmetry charges
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(hiyhi) = 5(%', qi) (1.5)

and the R symmetry charge is bounded by the central charge of superconformal algebra,
we note as ¢. For the algebraic relation of the chiral ring, we choose the normal notation

pidj = Clion, + Q"] (1.6)

one specific properties is by viewing the chiral field as the first component of a superfield,
also named as the descend equation. We can modify the action by perturbing the action
in these chiral fields

# / d22d20t p; + / d22d%0~ 6 = 1 / 220 4+ 7 / d*24? (1.7)
where d)z(?) = {G~,[G~, ¢;]} are result of the descend equation.We recall:
Q.0 =0 {Q,0W} = d0®

Q,0%)] = doW do® =0 (1.8)

why is this interesting: consider

271 @)1 = 1 _
mAO]—Amo1—Lw ~0 (1.9)

which implies fz O®) are Q invariant operators. Moreover, if we start with an operator of
degree (1,1), we end up with an operator that has vanishing vector and axial charges, this
enables us to freely insert arbitrary many of them, and we will do this thing.

We know that for 2d conformal theory, a natural correspondence between operator and
state is established, and this also works for superconformal theory. However, we should
keep the operator insert on the boundary in R sector and ensure () as a scalar charge, so
we need the topological twist. We do this in the traditional way, by introducing the R
symmetry current coupling to the spin connection

S—>S+§(/J@+Jw) (1.10)

after the twist, the supercurrent G~ (z), G~ (2) become (2, 0), (0, 2) weight and ¢;, ¢; become
(0,0), (1,1) weight. We thus can inserting the field to boundary and get a corresponding
state

1) = ¢:l0) + Q) (L.11)



remember QF becomes a scalar in the same time, we can parametrize the same vacua using
anti-chiral field, which is connected to the chiral one by a basis transformation

(i = (j|p7 (1.12)
we also has two natural inner products, identifying as the metric on the moduli

nij = (Jli) g5 = (jli) (1.13)
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Figure 1.

one of the most important correlation function is the Yukawa coupling
(didjon) = (ilj1i) = Ciyill) = Chynir := Cgi (1.14)
which implies that Cj;;, is totally symmetric in indices.

1.1.2 Vacuum Bundle and tt* equation

Besides the chiral ring itself, we are interested in seeing how the structure of vacua and
chiral fields deform as we perturb the theory by marginal chiral fields. We remind ourselves
of the vaccum bundle {|i(¢,?))}, and study how it varies as a function of moduli parameter.
We already know that the chiral ring elements has a dependence on the moduli space, so
it can be seen as a bundle over moduli space, where we are able to deduce a covariant
derivative with respect to this vector bundle.

|i(ti, 22)) N

Figure 2.



Using the result of [1](this is also stressed in geometry language in appendix), we know
that
0Cijr =0 (1.15)

one also introduces a connection on the vacuum bundle
Dilj) := (9; — Ai)lj) (1.16)

as well as D;|7), there is a interesting matrix relation named tt* equation , if we view the

k

Yukawa coupling as a matrix element ij = (Cy)]

[Di, Dj] = [Di, D;] = [D;, Cj] = [Di, Cj] = 0

[Di, Dj] = —[C;, Cj] (1.17)

This is the relation between the deduced connection/covariant derivative and the Yukawa
coupling.

We have a normalization ambiguity of absorbing fermion zero modes, equally trans-
lates to the ambiguity in defining the normalization of the chiral states |i). Consider the
line bundle £ over the moduli space generated by the vacuum state |0), two different
normalization of path integral give

0) = £(£1)]0) (1.18)
which can be viewed as a gauge transformation
Ajp — Al +0if (1.19)

And we shall choose the holomorphic gauge

0 = 82(%(‘]0? = -0K (1.20)

since |0) is a section of £ , Zp is a section of of £2 and Z, is a section of £2729. Where Z,
is the partition function of genus g worldsheet theory,we can see this result in this graph.

L
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Figure 3.



Together, all physical observables are independent of the choice of normalization am-
biguity.

We now leave a short comment on metrics on the moduli space, normally we mean
the metric g;; defined at the beginning (which is also called the ¢t* metric), but some time
we also use the so called Zamolodchikov metric, which has close relation to the metric g;;.
The Zamolodchikov metric is defined as a correlation function of marginal operators,

Gij = (07 (1617 (0)) (1.21)

and it is known that this only differs a scaling by Kdhler potential with the natural metric
we defined already
g5 =¢ %Gy (1.22)

since mnaive special geometry definition is e™® = (0]0) ,this shows that the so called
Zamolodchikov metric is nothing but a the normalized tt* metric. Zamolodchikov met-
ric is regarded as the Weil-Peterson metric on the moduli space, so in some reference it is
also called Weil-Peterson metric.

1.2 Coupling the B model to gravity

There are three steps to be concerned when we coupled a theory with gravity. First we
need to write the Lagrangian in covariant form, so covariant derivative and general metric
can appear. Next we need to add the dynamical metric term(Einstein-Hilbert) into the
total action, therefore graviton can be some dynamical stuff. However, these two steps are
not quite hard comparing to the last: we need to do path integral over all possible metrics.

Follow the inspiration from string theory, we first need to regard all metric connected by
Weyl(conformal) and Diffimorphism as equivalent one, which generally generate a moduli
space of metrics, more over, we are not sensitive with metrics but topology now, so moduli
of all possible Riemann surfaces appear.

One may doubt if there is a conformal anomaly that obstruct us, but we can show this
can be universally solved by topological twist. Since the original Virasoro algebra

im(m2 — 1)dmn.0 (1.23)

Lm;Ln: - Lmn
(Lo, L) = (m =)L+ 5

the nonvanishing central charge results the conformal anomaly.But after the topological

twist )
L,=1L,— g+ 1) (1.24)
with the algebra
[Lms Jn] = —nJmin
[Jma Jn] = %mém-i-n,l) (1.25)
one can show
[f/m, i}n] =(m— n)f/ern (1.26)



which means the general topological strings can be well defined in any dimensional target
space, but we will see why Calabi-Yau threefold is the most important one.

One then borrows the treatment people does in bosonic string theory to B model to
couple it with gravity. We can do the exact identify

(GT(2),J(2),T(2),G™(2)) + (JprsT(2), — : bc : (2),{QBRsT,b(2)},b(2)) (1.27)

and the ghost number of an operator is identified to the axial charge of the B model.We
should note the only condition this identifying works is we have an Calabi-Yau threefold,
since the virtual dimension of complex structure deformation moduli space of Riemann
surface

dim M, = W' (TX) — h(T%) = — / ch(TX) Atd(TY) = 3g — 3 (1.28)
b

matches with the dimension of stable map moduli space
a(TM)-p+dimM(1—g) (1.29)

only at ¢1(T'M) = 0 and dim M = 3, this makes the Calabi-Yau threefold not only im-
portant in phenomenological consideration of string theory but mathematically crucial for
defining topological strings. Because only if we choose the target space to be Calabi-Yau
threefold, we realize mirror symmetry in stringy case (as it confirms the A model), and we
are able to put our definition of free energy to higher genus worldsheet.

In bosonic string theory, we use Beltrami differential as basis in the Riemann surface
moduli space, we can do similar thing here, we also remark that we omit the measurement

5’f:/E d?2G~ ¥ B’f:/ d?2G~ " (1.30)
g

Xg

and
39—3
pg = < 11 ﬁ’“ﬁ’“> (1.31)
k=1
For free energy of the twisted A/ = 2 theory coupled to gravity at genus g > 1, is defined

F, = / g (1.32)
g
The condition for Calabi-Yau threefold is important since only for this condition that
F,,g > 1 can be nonzero.Moreover, we defined the prepotential to be genus 0 free energy,
and genus 1 free energy is defined by the analogy with bosonic string theory

F = 1/d27Tr[(—1)FFLFRqHLqHR] (1.33)
2) Imrt

However, although the analogy between B model and bosonic string is convenient, one

should not recall it with nostalgia, since G~ cohomology generates a nontrivial chiral ring,

but b cohomology in bosonic string theory remains trivial, so we remark only coupling to

gravity we can do this analogy.



2 Holomorphic Anomaly and the Recursion Equation

We now go into the topic of holomorphic anomaly equation, we shall first glimpse its
appearance in n-pt function and holomorphicity paradox in the first subsection, and derive
the holomorphic anomaly equation next. We still follow the original BCOV paper.

2.1 Zamolodchikov derivative and the Holomorphicity paradox

We define the n-point correlation function coupled with gravity, or the topological string
n-point function, the worldsheet has a genus of g

= [, < [o- [ o ,E( [ mif G-nk>> 2.)

one might think
Y

i1 +in

—or ., F, (2.2)

11 0n
is a section of bundle Sym™T ® £2729(T is the tangent
bundle of the moduli space, for every marginal operator inserted, it is corresponded to a

but this is not true since Cy

tangent vector, one can refer to figure 2) and F} is a section of L2729 we formally have

c?

i1in

=D, ...D;,F, (2.3)

In BCOV’s second paper, they guessed this D; can be replace by the covariant derivative
D; induce by the Zamolodckikov metric, which implies the following recursion relation,
we state their result and repeat their argue for the relation in the following part of this
subsection, they show that if and only if the formally written covariant derivative is indeed
the natural covariant derivative deduced from special geometry, then the following relation
will be true

2(0=9)K cinii ., (yin—1in—1(19

11 in—1in 11t —1

— 9 (62(1—9)KG*311'1 o (Pn—rin1 09 ) (2.4)
We have two things to argue about the naturalness that Zamolodchikov metric arises in

the n-point function, which BCOV named as the contact terms argument.

e Firstly, in [2], it is proved in conformal marginal operators, the OPE has the leading

term of

6 ()01 (0) ~ 6%(2)T%017 (0) (2.5)

i J
where I’fj is the Zamolodchikov metric. BCOV also give a tt* proof of this conclusion,

they conclude the insertion of @(2) in the correlation is equivalent to
/@”N@—n+p“) (2.6)

e Moreover, BCOV also gives a more quantitative result. By calculating the contact
term between the additional term of topological twist and the desired operator qbz(?)
, they found the contact term has the form

R
—0; K — 2.
0 2 ( 7)



which means for genus g worldsheet
/¢§2) — 0 — Ty — (2 - 29)0K (2.8)

For a specific calculation, a convenient example is the correlations on the sphere. Sphere
enjoys a better isometry symmetry so we are able to fix generic three points to 0,1, 00
through PSL(2,C) group.

Gty = <¢i1(0>¢>¢2<1>¢i3<oo> [o2 ] ¢§?}> (2.9)

we check if this correlation is holomorphic

55011% =

[ vaa <¢il<0>¢1~2<1>¢i3<oo> Joe [o2d ot A z G*&j<z>> (2.10)

where C, and C’; are small contours enclosing the point z. Now we can deform the C;
countour around the other operator insertions. Since

§ crow =0

w

f Gt = dgl™ (2.11)
Cw
then formally we get
0;Ciy iy =
S [ i {6065 I PPN PN e >:
;4/@ z<¢1<0>¢2<1>¢3<oo>/¢14 [adn-e [ ot fCZG 5i(2) ) =0
(2.12)

However, we have another approach directly from tt* equation, which leads to a paradox
and finally leads to the Holomorphic anomaly equation. The paradox comes from the com-
mutator [55, D;] doesn’t vanish, which implies the curvature of the natural Zamolodchikov
connection do not vanishes. For instance, we can consider the 4-point function

Ciji = DiCijp, (2.13)

if 5Cijk = 0, we have

mCijki = 0mDiCiji = [Om, Di|Ciji, =

= 2G17Ciji — (Rp7:Cnjk + permutations) # 0 (2.14)
and this situation is even worse for higher genus conditions. BCOV explains this paradox
by arguing that although we can freely insert operators like [ dqﬁgo’l), these terms do not
vanish upon integration over the Riemann surface, because the corresponding integral gets
a nontrivial boundary term when the field qﬁl(-o’l) approaches a point where some other
operator is inserted. To sum up, 6jCi1~--in may get a contribution only from the boundary

of My, and since this boundary corresponds to two operators colliding, we see that the
n-point function may fail to be holomorphic only because of contact terms.



2.2 The Holomorphic Anomaly Equation

We know that éjcil...in gets a contribution from the Riemann moduli’s boundary, it is

not surprising that (%Ci i, also gets a contribution only from the boundary of the moduli
space My ,,. Since this case the boundary is more complicated, we eventually get a recursion

relation coding how these contributions connects to each other.

2.2.1 BRST invariance violation check

Another understanding is by the violation of BRST invariance, since classically it is sure
that partition function and correlation function are holomorphic on the moduli space with

respect to BRST invariance.

We examine the violation of @Fg = 0 now, taking derivative of s generated by a
insertion of anti-chiral field ¢;

39—3 _

iFg :/ f G+f G éi(w) [ 88" ) - [dm A dm]

ot M, \JCu o .
39-3 52 _

_ T k k =
9 =1 k#i ki
We give a short remark of how this is derived, first using the OPE
2T
Gt (2)G™ (w) ~ ~ (2 +-0 = dzGT(2)G™ (w) = 2T (w) (2.16)

_ .

and then convert T and T into derivatives with respect to the moduli m, m,which comes
from a first order deformation of worldsheet metric (after be quotiented by Weyl&Diff):

/ AoV 1SR T, = / 41 6mO T, + po%5m T, (2.17)
b by

after we insert this into

5n{0)y = (O [ Vhd*aSh"T,,), (2.18)
Zg

we have

—0y = <(’)/ d22pl *T,z), = (OT%), (2.19)
s

~10 -



2.2.2 Deriving the Holomorphic Anomaly Equation

] © 8o

Figure 4.

Back to the theme by viewing the above calculation, BCOV noticed that the integral
obtained by 5;Fg can be expressed by a integral on the boundary of M,. The boundary of
M consists of [% g] +1 irreducible components Dy r = 0,1, , [% g]. Surface belonging to
Dg are such that they become connected surfaces of genus (g — 1) with two punctures upon
removal of the nodes.Moreover, Dy consists of surfaces which become upon removal of the
nodes, two disconnected surfaces, one of genus r and one of genus (g — r), each with one
puncture.We will see them as follow. We remark that in some reference these two classes
are named as A and B type sewing, like in Klemm’s note, one should not confuse them
with A and B model.

We first deal with Dg, surface sitting near Dg has a long tube which becomes a node
as the surface approaches Dg. Thus we can choose coordinates near Dg as (7, m/,z,w)
where 7 is the moduli of the tube and (m’,z,w) are moduli of a genus (g — 1) surface
with two puncture, where z,w for punctures, m as ordinary moduli space coordinate.
Since the second order derivative of m,m in (%-Fg, at the boundary we will be left with
a derivative in the direction normal to DS,Which is ﬁfm. Together in the limit 7 — oo,
the Beltrami-differentials p(*) and pu(*) associated to the moduli z,w localized near the
punctures

/(ZG — G* (2.20)

and those associated to m’ reduce to x on ¥,-1, the total contribution to 9;F, from Dg is

39—6
/ 0 - _ - _ ~
/Dg[dm,dz,dw}alm7_</zg¢ij{ZG yé;G wa %C;G g/ MaG/
221

The term ¢; has two probable location, on the tube or outside the tube, as the graph

follows. And we will examine the two cases.

- 11 -
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Figure 5. Figure 6.

For the first case, when we approach 7 — oo limit, the tube is projected to ground state
so the nodes are represented by insertions of ¢;(z) and ¢5(w) , and the tube is replaced by
nI* the integrand is

39—6

af?m <}'{ j{G‘f% j{Cw j{Gcbk / ¢>1H/ MaG/ uaG‘>

(2.22)
this turns out to be zero since the latter part do not depend on 7, as defined on »,_;. For
the second case, the node is represented by an insertion of

o (7 / Gk v ¥ () (2.23)

Since )
7 TN AR — A 2K G Rk
(g|¢ilk) = (] k) M] My = Crzpe®™ G¥ G5 oy, (2.24)
is independent of the position of ¢z, a trick without rigorous is by approximating the

integral result as the volume of the tube, which is Im7, and the insertion is

0,(:)Cee GG 6u(w) [ 1~ 0,(:) e GG gy(w)Imr (225)
this volume cancels with 7 — Im‘r’ making the integrand
3g—6
Cz;WMGﬁGkE <]§ ?{ G~ ¢;(z f f G~ dr(w H/ 11,G~ M;@>
C: Cuw Sy Sy
(2.26)

the result of the integral is
1_ o
50;5,5621( GHGM™D;DLF, 4 (2.27)

this is not hard to find out with these two remarks:1.Remember the insertion of [ #? can
be replaced by D;, 2.The coefficient % comes from the symmetry of exchanging z and w.
There are some subtleties: as the selection rule comes from zero mode counting affects, we
have to restrict

Grawt+ta=q+aw+q=3 (2.28)

since ¢; = ¢; = 1, the only choice of g, g, that do not annihilated by G*,G™ is (g;,q;) =
(qk,qx) = (1,1), correspond to the marginal deformations of the twisted N = 2 model,
which ensures this calculation.

- 12 —



We then deal with Dy, recall that a surface in the neighborhood of Dy has a long tube
which connects two disconnected surfaces ¥, and ¥,_,., thus we can choose coordinates near
Dy as (T, m',z,m’ ,w) where 7 still characterizes the tube, and (m’, z) € M1, (m",w) €
M_r1. The non-vanishing contribution comes from this graph

({1 1))
l Imt l
Figure 7.
as
o’ (5 |ilk n* Ko (w) = Cipe GG (2) gy, (w) (2.29)

inserting to the integral, the result is
_ . ) 3r—3 - ) 3(g—r)—3 )
Cz’jk62KGijk/ </<f>§-) 11 /uaG‘/ﬂaG‘> </¢>;(€) I1 /MaG‘/ﬂaG_>
Mo a=1 > a=1 Sg_r
(2.30)

perform similar calculation, we obtain

)

O GIIG ¢ (2) i (w) Dy Fy Dy Fy (2.31)

We nearly obtain the HAE, with some final remarks: as r = %g, there is a symmetry
between X, and ¥,_,, so a factor % is required, for even g, it’s

[39] o
> Cope*  GUGM D F. Dy, (2.32)
r=1
and for odd g, it’s
39-1 o 1 [39] o
K GIIGR D B Dy F, -, + 5 3 Crpe? GI G’“"ijF%ngF%g (2.33)
r=1 r=1

a usual convention is to summarize in a general form

—1
eGP GM D, F. Dy F,_, (2.34)
1

—_
Q

2
T

We combine the above calculation, obtain the Holomorphic Anomaly Equation

-1
_ 1_ o g

0:Fy = 50" GYIGM(D;DyFy 1+ Y D;F,DyFy ) (2.35)
r=1

~13 -



Last in this subsubsection, we give a short remark on the master equation, which is a
general form that combines g > 2 HAE to one single equation. For summed free energy

F=) Fyg2? (2.36)
g
If we define
D;jF =) g¥2D;F, (2.37)
g
then
2 . 7. A~ A~
(0; — O;Fr)e” = QESO{;E€2KG”GMD]‘D1@6F (2.38)

is the summing of all genus HAE. We know that e has a meaning of partition function,
and in some literature, it is also named as ”wave function” for string field theory reasons.

2.3 More Remarks About HAE

We shortly glimpse other results BCOV paper covers.

2.3.1 Integrability of HAE

We shortly go over BCOV’s result on the integrability of HAE, which is sufficient to prove

[d:, ds] = 0 (2.39)

1) g
where

2
_ — gs ~ I N RPN
d; = ag - 6;F1 - ESCEI‘C€2KGMGM€D]'D]€ (240)

)

We can directly see this definition comes from the master equation of HAE, which ensures

dzel’ (2.41)

)

can be directly integrated. And the proof of the commutator to be zero is even stronger
than integrability. BCOV proves this relation by using the following relations

105, Dj”c = —ngéfc - G;kdé' + Cjkmégjm€2KGmmGZl
Cigi = Ciirn - DiCir = DiCip 0:Cy31 =10 (2.42)

and by inserting the definition of F}

0;0;Fy = %Trc,-éj - %Gﬁ (2.43)

after complicate calculations which we omit here, we finally get

2
9s [~ kk i o 7 3
ds,d5] = 2 [C;,;[eQKGkkG”Tr(DkCZ)Cj ~ (i ])] —0 (2.44)

— 14 —



2.3.2 HAE of correlation functions

Recall that
¥, =D ---DiF, (2.45)

11

One direct but not simple thought is to generalize Holomorphic Anomaly Equation to
correlation functions, and we expect that this generalize form of HAE can come back to
the ordinary HAE in a specific limit.

To calculate the desiring &C’l(f ) i, we notice that are two types of contributions. First
one is similar to the ordinary HAE, from the boundary of Mg, the only difference is the
moduli of a genus ¢ surface with n punctures. Second one is since many ¢; is present, we
also need to deal with what happen if ¢; approach them.

We first consider the first type of contribution, by introducing the result that bound-
ary of Mg, has two irreducible components Dgg?n) and D((Tﬁ))? where r and s represent
how many genus and punctures does the boundary components have respectively. From
topological considerations, simple properties are

(0 0) ~
Dl = Do) =
DE;’;)) ~ Dgg’n;’" s) (2.46)

(0)

Surfaces belonging to D( n) become connected surface of genus g — 1 with n + 2 punctures

5)

one of genus r with (s + 1) punctures, another of genus (g — r) with (n — s+ 1) punctures.

upon removal the node. And surfaces belonging to Dé become two disconnected surfaces,

Their graph are as follow respectively

o
o o

2

I$T igy =+ N"{i:s) N’l{::s—u T ‘N)‘{::n)

Figure 8. Figure 9.

the total contribution is

1*”72[( 77 kR (9) 1~ 2K i Gk ol clo=r)
3G e GVaE lem . 50 GG Z (r—s) l Z chr(l) “Go(s) JZcr<s+1) “Go(n)
r=0 s oESh
(2.47)
where
C’L(lo)ln = DZI e ‘Dinf.’iCianinflin (n Z 3)
0 =c® = Cff) -0 (2.48)
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According to BCOV paper, the second type of contribution is viewed as some curvature
singularity, each has the form

+2 Z G;, CY9 (2.49)

s i1l 1Zs+1 “in
since the integral around the surface has
/R =—-2m(2g—24+n-1) (2.50)

the total HAE for correlation functions is

2K kk
5,09, = fC’——-e GG C(kzl it
7—__ 02K (i Rk (9 T) _
ijk€ GG ZZ Sl r—S' Z 315(1) “Uo(s) .]7'0'(9+1) o (n)
r=0 s=0 ocESH
—(29-2+n-1) ZG it (2.51)
s=1

when n = 0 this returns to the anomaly equation for free energy. One interesting thing for
this HAE is this is also valid for ¢ = 0 and g = 1 case, which reduces to special geometry
relations. This is why HAE is the quantitative characterize of quantum special geometry.
There is also a master equation for correlation function HAE, if we consider the mod-
ified partition function (s are separate variables, one should not confuse with power)

W — ZZ 2g 20y Z(lg anil,,.xin+(2><74_1)]ngs (2.52)
g=0n= O

the master equation is

GV — g?,@ _ 2KGj3GkE 5 G- 9 zF 0 w 9
e = ? k€ DI DLk — G2 gs@—l- ax e ( 53)
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3 Integration of Holomorphic Anomaly Equation

BCOV not only gives the HAE itself, but also a method to obtain its solution, and the key
object occurs in solving this recursion relation is the Holomorphic Ambiguity.

0;A=0;B= A=B+ f(2) (3.1)
3.1 the Feynman Rules and direct integration
3.1.1 g=2and g=3

To make it simple, we start by integrating Fs, the genus 2 case reads

1 -z
OFy = 3 e GG (D;0pFy + 0;F10, FY) (3.2)

Since the Yukawa coupling is totally symmetric in its indices and satisfies
D;Ciir = DiCgg (3.3)
we can always integrate the Yukawa coupling locally as

CE}E = 6_2KD5D3(§ES (3'4)

where S is a local section of £72, so

O = Cpe? K GG = ;57 (3.5)

= (%

where S7F = GﬁG%éjé,;S . We then write the genus-2 equation using S7%, using the
Leibniz rule

1. 1 .-
0 [FQ - 5SJk(Dja,gpl + ajplakpl)] = —553k5§(DjakF1 + 0; F10.F1) (3.6)

Using the relation of [9;, D;], we can obtain the right hand part as

1. /1 .
_ic%mnSJk (20nmjk + CmnjakFl + CjkmanF1) + %Sgajﬂ (3.7)

using the Leibniz rule again

_ 1 . 1 ; 1 i
&i |:F2 - isjk(Dj({“)kFl + 8jF18kF1) + Zsmnsﬂc <20nmjk + 2C’mnj8kF1) — ;szajFl]
1 ik B 1 X ~im

it is observed that the right hand side can be witten in a form of total derivative

1 o 1 P

T 1 1 -
— b [SJ’“SP‘ZS”"‘ <8cjkpcmnq + = CipmCan - %SJCMS’“Z + 214(% — 1)5)} (3.9)
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this means we finally get

0:Fy = 0; [A lot of terms] (3.10)

One gets a long but exact expression, up to an ambiguity, of Fy (Cz(ll)zn
1

55 Cyms™CLY + L s5CY

means D;, -+ D;, Fy)
_ lsijc.@ + 10.(1)5”0(.1) —~ %Sjksmncjkmn -

+3 L G130 SP1C ™ + 2 swqusmnoipmchn _ A 155 Cins™ + ﬂ(ﬂ —1)S + fa(t)

(3.11)

this expression can be also expressed in Feynman diagram like worldsheet cobinations.

= - BEHE -
4 @D+ )+ (S (=)
HE) 3 @-D+h 1)
+1 (=)o) 1G] a0

| —
M| —

NI

—

i J =gl

e x =8
o =28
Figure 10.

this method also works for ¢ = 3 and even higher, but the expression is so long and 1
will not type the full expression here, ,by omitting some terms, the Feynman diagram for

g=3is
- > &
+H I+ MG +
DT - o

Figure 11.
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and the corresponding expression is

Sz]c(z) + C( )51]0(2) (24 4 2)520(2) + QFQSiCi(l) _ %Sijcijksklcl@)
1 ..
—stsqufj,zl s”cf]gsklc,(” - 38USHC o) 4 +fs(t) (3.12)

for upper cases, we know we can sum up the graphs according to Feynman rules, we have
three types of propagators and many vertices, for propagators

Ki=_gi [Kie—_gi K= _29 (3.13)

and many vertices, we generally define as

él(lg)zn pmtl = (29 —2+n+ m)éz(lg)zmgom

~(9) (9) ~(1) X

szln - Czig i CSE’) - ﬂ -1

~(0) _ ~(0) ~(0)

Con =0, C;ln, Cillm=0, CY = (3.14)

It’s still tolerable for ¢ = 2 or ¢ = 3 to write all possible vertices and propagators, but
it’s quite difficult to generally write all vertices and propagators for higher genus, BCOV
developed a generating function of all possible vertices and propagators, by reducing the
Feynman rule to the Schwinger-Dyson equation of the finite dimensional system.

3.1.2 arbitrary g

Recalling the master equation for HAE of correlation function,

0

d-eV = ééf-féKGﬁGkE & — Gy? 0
i 9 ik ziozk Ut oy

S

Beside of the quantity W, BCOV introduces a generating function W of all vertices

W (gs, o, 0,1, 8) = Z Z n,m,gs 1O g™ (3.16)

g=0n,m=0

and there is a relation between W(gs, x,p,t,t) and W(gs, z,t,t), explicitly,

W(gs, z, ¢, t,1t)
L ooy 20 i i 1\ X 1
— R A Dn( ——
gzoz O Ve TR F
s € e X
—W Y _<7_1)1 3.17
(1—s0 1—¢ > 24 o (317

thus W has a similar master equation

5w (95 Ak O 9] w
dse :[2(3’5 5 Bk G”J:Ja@]e (3.18)
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another similar generating function coding all propagators, where A is the inverse of
K ,defined by

SYNi + S Ay, = —6},
SijAj@D + SiAsw =0
SZAU + QSAJ‘SO =0

S'Ajp + 280y = —1 (3.19)
and the generating function is
Y(gs,z, 0, t,t) = “5g2 (Ajja'a? + 202" ¢ + Agw(pQ) + 3 In < e > (3.20)
satisfying
2 2
5. W — | _9s quk AP I 21
Ose [ 5 C; DI Dk G, a5 e (3.21)

By considering the integral
Z = /da:dgoe:z:p(y +W) (3.22)

this integral is regarded as a partition function of a finite dimensional quantum system,
and the dynamical degree of freedom are 2’ and . The perturbative expansion of Z can
be obtained by Feynman rules of z* and ¢,

InZ = Zgzg_Q
g

another interesting corollary is

g—1
-t 1t r] e
r=1

0:Z = (3.24)
which indicates that

F, = —(Feynman ,nonholomorphic) + holomorphic ambuguity (3.25)
is the exact form of all Fj s.

3.1.3 Short Remark on S, for construction of propagators

We can always integrate the Yukawa coupling locally as
OZ]E = 672KD;D35,‘€S (3.26)

and this S can also be explicitly constructed. Using the definition of Kéahler metric and
Kahler curvature relation

R = —0;Tf = G0] + Gi30F — CamCE™ (3.27)

igl —
the original formula can be rewritten as

b: [sjkcklm] — 5 [OZK&ZL + 0K + r{m] (3.28)
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this can be easily integrated as
SUC i = 6j0k K + 810K + T, + (3.29)

where f is a meromorphic section of £, which can be expressed as
n
fir =010k In f + 6,0 In f = > vy,a0pv™ + fiy (3.30)
a=1

{v%%}4=1.... » are meromorphic tangent vectors which are linearly independent almost ev-
erywhere on the moduli space, and v;, are inverse of Vi, f is a meromorphic section of
T x Sym?T*. f and v are generally determined by regularity condition of Kahler potential
and metric, as for propagator expression belows, we have invariant combination e*|f|? and
G41|v|?. We can see this more clear in the quintic case below.

Generally S¥ has $n(n + 1) variables but relation (3.29) has in*(n + 1) constrains,
which force people to ensure the choice of f is appropriate.

For case that we only have one modulus, the equation is greatly simplified and the
solution is easy to obtain, we can choose f to be 0, the propagators are given as

Sl — L8ln [201n (eK]fIQ) — (Gﬁv)_lﬁ(vGﬁ)]

Cin
1 2 _
§' = =— [ (Om(e¥|£%)” - v o (e | £17))|
111
S = [51 - %Dlsll — ;(511)20111} Oln(e™|f?) + %Dlsl + %sllslom (3.31)

for general moduli, we have a special solution of S, but actual computation of propagators
are extremely miscellaneous

S = % [(n +1)S' — D, S — Siﬂ’sklcjkl} 8 In(eX | fI2) + % (DiSi n sisfkcijk> (3.32)
3.2 Explicit Examples

We will give some examples below. In these case, we can see how higher loop partition
function is explicitly calculated in a recursion way. We also can have clues that free energy
has a close relation to modular forms by doing these calculations. I'm sorry that due to
conventions of different models are different, as historical and convenience reasons, that
notation of some basic variable may be different in follow subsections, please be careful.

3.2.1 The Zs ® Z3 orbifold

7o ® 73 is a result of dividing T2 x T? x T2, with each torus having a Zs symmetry, by the
discrete group generated by

g = diag(l,w,w?) h=diag(w,w? 1) (3.33)

this model has 3 Kahler moduli (every torus has one of them), but no complex moduli, it’s
a rigid orbifold. The Euler characteristic is x = 168. The Kahler potential is

3
e K0ete) = i ] (7o — 7a) (3.34)
a=1
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we can compute

5ab
A AL
Fy=—rY In(ra — 7a) 0’ (7a)? (3.35)

where k = 4, because of strong symmetry here, we can obtain
1 n (1¢)
St = — — +2
<(Tc —7c) n(7e) )
1 77/ (70) 1 77/ (7e)
S = — + 2 — + 2
<(Tb ) n(7v) (Te — 7e) n(7e)

_ 1 77l(7—a)
S = H((Ta_erz )> (3.36)

P 77(771

we give a short remark of obtaining these propagators, take S% as example. From equation

1

9S8 = — 3.37
(Te — Te)? ( )
integrating results
1
S — —— 4 (1) (3.38)
(Te = 7c)

and the condition of modular invaiance fixes f(7) = 2;’(53). Using HAE,

Doy ——~— 1 o moF (3.39)
al'2 — 2(7_a_7__a)2 b1 10c L1 .

and this is integrated

FQ:;H&FIZ’{?H(( ! +277(T“)> (3.40)

Ta — Ta) 1n(7a)

For Fj, a little more complicate. HAE is given

+ O F) <ac + (TET)> Py + 0.F) (ab + (2)> ) (3.41)

we can see that the holomorphic ambiguity has a contribution of modular form of weight 4

TGN EIGAY
pre 3( ) (3.42)

This phenomenon persists at every genus whenever there is a modular form of appropriate
weight. However people do not know the asymptotic behavior of Fy for this model to fix
all order ambiguity.
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3.2.2 First Glance of Quintic

In every topic of mirror symmetry, Quintic appears, so we are about to discuss it again.
We first summarize results of the original BCOV paper, which calculated the free energy
of Quintic to g = 4. Then I will probably summarize contributions of [3], which calculated
the quintic model to g = 51, in the next section.

The Quintic has 101 complex moduli and 1 Kahler moduli, the complex moduli can
be thought as coefficients of the polynomial and the Kahler moduli can be thought as the
Kéhler class of P4, we use its mirror to calculate HAE. Explicitly,

W(z;) = les — Sproriroxsry =0 (3.43)
the holomorphic three form is
zadrodx1drs
Q=5)p—— 3.44
v OW/0x3 ( )
the Yukawa coupling is
BHY) A
C =— | QAN=—=|— 3.45
Yy / 505 <5> 1= o5 (3.45)

as 1) — 0 the Kdihler potential diverges( in a ||? behavior) but the metric remains finite,
cosidering the invariant combination e’ |f|? and Gwﬂv\Q, the regularity condition at the
origin implies that f should has a zero at ¢ = 0 while v remains finite,also there is no any
additional singularities except ¥ — oo and ¥ — 1 so we have ansatz

F@) =91 =9°)* v@) =(1-1¢°)° (3.46)

where a and b are some constants. Plug this analysis to 3.31 we know that ¢y — 0 the
propagators behaves like

9" A% d d
S =) ~y? () SY— ~t¢— S~ const 3.47
(55) ~¥(5) Sag~vop 5~ eoms (347
We know that 1) — 1 is the conifold point, a good frame is the canonical coordinate
t ~ —In(1 —¢°) (3.48)
we can deduce
Cue ~ (1 —9°)° (3.49)
there is a gap condition here
830 29—2
Fo~ [00C] ™~ g (3.50)

g [&ecttt]gg_g (1 _ w5)2g—2

more carefully analysis gives

Agy 2mi \ ®
o g <(5> “0“”)) 820
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where A,, comes from general form of Holomorphic Ambiguity

2g—2 Ag
fo() = gzz;) A=)z (3.52)

We can also find the expression of Kahler potential in the large ¢ limit, where

dt dip
Gw¢d1/) Cdiﬁi/:ﬁ + (l[} )
K(¥,%) = —Inwo(y) + o(¢p ") (3.53)

where C is some const and wg(1)) is the solution of Picard-Fuchs equation, inserting this
results

1— b dat [ f\?

v _
s <2m> gz (dw ( )

W) 5\°1- 1/15 2 -1
5% = (27”) S5 0o In(s/m0)? 010,00, n(f f0)]

1 1 1 1
S = [Sw - §D¢SW - 2(5W)20¢W] Ay In(f /o) + §D¢Sw + iswswcww (3.54)
the genus 2 free energy

1 1 1
P = (251“/’0@ + iciswq}, — gswswcww + - ) + (%) (3.55)

where general form of holomorphic ambiguity is given by

B C

fl)=A+ + (3.56)
(L=9P)  (L—9P)?
this reproduce the A model free energy if we transform into canonical coordinate
Fy(q) = 5+1 3 +ZD (3.57)
A= 7744 T 240 1—q ' '

where d,,, D,, has the meaning of Gromov-Witten invariants, counts the number of holo-
morphic rational curves of degree of degree n and genus 2. The ambiguity constants are
fixed by instanton expansion, for genus 2 this is not hard because A model consideration
implies there are no genuine genus 2 curve of degree below 3 so contribution from degree
below 3 comes entirely from the bubbling of the sphere or a torus. Eventually we have

71375 10375 625
288 288 ¢ 48 (3.58)

3.2.3 Simple Example From Mirror Curve: Local P?

In this and next section we actually calculate the refined Free Energy which is a generalized
form of free energy, one may first read the contents of refined B model in the next section.
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The mirror curve is a expression of toric Calabi-Yau variety, we first recall it quickly.

We know that the toric variety is defined by M = Clﬁé*Z , specified by k charge vectors
Q € ZF*3 satisfying the Calabi-Yau condition. In B model side, we can introduce two C
valued coordinate w™,w™ as well as homogeneous coordinate x; := €Y constrained by

k+3 N
(-1 [« = 2 (3.59)
=1

and the local mirror geometry is then defined by

k+3
wiw™ = H = sz (3.60)
i=1

makes a conical bundle over a family of Riemann surfaces, and z,s are complex moduli
introduced naturally, the canonical three form is

_ dHdxdy

Q
Hzxy

(3.61)
and it was noticed that this has a strong connection with the Seiberg-Witten model, where
the theory is also defined by a Riemann surface (the Seiberg-Witten curve). This is quite
simple but strong for genus one mirror curve, since it has only one complex moduli, the
direct integration is discovered by [4]. And 15 years later the direct integration for genus
2 mirror curve is proposed by [5], which we maybe will see in the next subsubsection.

The direct integration of mirror curves successfully used the properties of modular
forms, which some of them we recalled in the appendix. We can obtain the A-period in a
similar way as Seiberg-Witten theory

dt o E4(T)g3(u’mi)
du \/E6(7)92(U,mi) (362)

and due to the definition of refined free energy, we can compute the free energies at genus
one

1 b
(1,0 _ ~
F =51 In| A |J| u® IJl mj’

1 .
FO = 5 In (A“ H u?m?” |gij1|> (3.63)

due to the A period we can also calculate the prepotential and the B period

2 17(0,0 2
OrYY G, (3.64)
ot? 27
and the propagator is
2
8" = L Bu(r) (3.65)
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where ¢q is the intersection number of the A-cycle and the B-cycle.

We can now zoom into the case of local P2, as the coordinates and constrain is

Xo=uzyw X;=2%y Xo=wy? X3=uw’z
_ X1 Xe X3 u3

% =z (3.66)

the mirror curve is given (in Weierstrass form)
2 3 1 1 2
y - =4dz° — — (14 24z)z — —— (14 36z + 2162°) (3.67)

12 216

one calculate the mirror map by the inversion of j function

q(z) = =23 + 452% — 15122° 4+ 4567225 + - - (3.68)
and A period
t =1In(z) — 62 + 4522 — 5602> + - - - (3.69)
B period
1 1 141 1486
tp=—=(In2)?2 +-Xaln(z) =32+ — 22+ — 23+ ... (3.70)
6 3 4 3
We can calculate the Yukawa coupling
1 1
Coroz ==~ 3.71
323(1 + 272) (3.71)
and the propagator
3
57 = Zz2 + 923 — 542* 4 7562° 4 - - (3.72)

by inputing the prepotential and genus 1 free energy, we can solve the HAE to arbitrary
genus, and it is known that the holomorphic ambiguity can be fixed by the gap condition.
Which can be calculated explicitly, the first result is given by [6], stating

By,

(9 _
A2g72 - 29(29 - 2) (373)

3.2.4 Genus 2 mirror curve and the C3?/Zs; model

We shortly summarize the direct integration of genus 2 mirror curve’s HAE discovered by
[5]. We know that it is quite hard to do HAE calculation for general number of complex
moduli, since the number of propagators grows factorial. But for cases like mirror curve,
we can get strong results from modular forms.

Generally, the mirror curve is by doing Fourier Expansion for Igusa invariants, which
is super complicated, at last We can get the 7 matrix 7;;, which is used to compute the
genus one free energy, which has the same form of genus one case, and the propagators

SY = %17087—1)(1 h’l(XlO)CpCé (374)
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From the PF equation, we know the A period, which we can use to compute the prepotential
(where C is the intersection matrix)

a?F(0,0)
= —CFC! 3.75
Tij 1] atkatl ( )
and the B period
_ i FOY 3.76
Vi at] ( * )

We now zoom into the explicit model, the mirror curve takes the form
= AP A 0 T T B (14 220) 2y P 2y P 422 P2 ¥ P (3.77)

and the igusa invariant is calculated

A |
= —Ez] 22( 1+ 2> (4+40z1)),

= 4zf z.j (1+242) +240025 23 =822 (1 +252)) + 25 (16 + 440z — 80z} )),

6 12

= -8z'z,; (=1-20z1+722} + 82 23 (1009 + 1090021) + 425 (3 + 7521 +922])
-4z2 [12 +365z) +165222) + 16z§ (4+ 1452, +9482% +320z])),
D = 40’96z] z [1 +272 +312._1z1 z2 +tlz2 (4+125z2)) — 23 (8 +225z2;)) .

Figure 12.

—3 1
( . 2) (3.78)

—2+ 921 — 1620 — 952122 + 3223 + 30021 23

using the intersection matrix

we can get the Yukawa Couplings

Czl 2121 —

523A

—1+ 2721 — 829 — 2102122 + 1623 + 4002 23
Carziza = 5Z%ZQA

—3 4+ 81z1 — 1429 — 4052129 + 82’% + 325212;%
Carzozn = 52125 A

—9 4 24321 — 1725 — 540 423 + 22521 23
Crprary = — oA = (o2 7 OO T 2% F 20007 (3.79)

525 A
and the propagators for further integration
3
Szlzl - 10 1 + 921 102122 5421 — 62122 + -
3

Siize = g% T 32229 + gzlzg + 182320 + T2f2s + - -
Spey = 28 + 2125 — — 62922 — 4225 4 - (3.80)

10
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the ambiguities are fixed at conifold point (3,—2/9).We end this section by the general
procedure of doing direct integral of genus 1 and 2 curve, which are as follow, this graph
is from [5], where (2.55), (2.65) are refined HAE.
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Mirror curve
y* =ax® — go(u, m;)x — gs(u, m;)

[ Compute T from

-

> %

1
=—+744 + ...
q

Compute the

Compute the
A-period from

propagator as

2 dt 82Es(1)
tt_ “0 — =Gy =/ —
& 1252 (1) du it g3E4 (1)
Compute the free
energies at genus one Compute the
prepotential
1 - bj
FLO = 37108 -_".];[u ];[m)l.J F(U.U]' CS
FO 2 %lag(-_xl_[ ndm;.’jlﬂabl] at? Rl ET
I
Compute the Compute the
higher free energies B-period from
F"8using (2.55)

and (2.65) up = ¢ aF®0
to an ambiguity D=%5¢

Fix the ambiguity
in the higher genus
free energies F'8

The Gap
condition (2.69)

Figure 13.
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Mirror curve

y2 = vgxﬁ—v1x5+ vgx4—vgx3+v4fz—v5x+v5

1
Compute (1’“ ?"2]
3Tz T22
from the Fourier
expansion of the

Igusa invariants

»
u Compute the topo-
Compute the propagator as logical metric from Compute the A-
ij 1 1 i period from the
S = S Eﬁrmlog[;tm) C,Cq |Gj| _ | BEs(7) PF equations
"V CE
Compute the free
energies at genus one Compute the
prepotential
b
F“'m=21—4]og _".l;[ual;[mj} . GZF(U'UJ
. Tij=-C;
FON 2 % Lag{ﬂ];[ udmj-j IG;;{.I] ie rkar!'
Compute the | Compute the
higher free energies B-period from
FU8using (2.55) 00
and (2.65) up i = ci9F%?
to an ambiguity D=7 ot I

Fix the ambiguity |
in the higher genus
free energies F"8)

The Gap
condition (2.69)

Figure 14.
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4 Other Aspects of Holomorphic Anomaly Equation

4.1 Discussion of the Holomorphic Ambiguity
4.1.1 General Ansatz

Though direct integration of the Holomorphic Anomaly Equation results a Holomorphic
Ambiguity, but this ambiguity is not unconstrained. Since the total F(9) have a quite
restricted pole and regularity structure at the critical divisors of Ms, most notably at
each conifold divisor there is in the local transversal coordinate t. a pole of order 1272
and regularity in the sub-leading terms in the F(9). There are also many other types of
singularities in generic multi parameter models.

We generally have an ansatz for holomorphic ambiguities in view of the conifold sin-

gularities

D t(i) (
=3y N (4.1)
i=1 k=0 z

where D is the number of components A; of the discriminant and ¢(i) gives the maximal
singularity that one has at the corresponding type of divisor, which is

t(i) =29 — 2 (4.2)

for conifold divisors. If in the large complex structure variables the point z; — oo is regular
the pgk) (z) are polynomials which degrees are bounded by specific models.

4.1.2 Boundary condition from light BPS states

Boundaries in the moduli space correspond to degenerations of the manifold and general
properties of the effective action can be inferred from the physics of the lightest states.
More precisely the light states relevant to the F, terms are BPS states. It’s convenient to
see this in Fi, at the point of maximal unipotent monodromy in the mirror manifold W,
the Kahler volume of the original manifold is large so the lightest string states are constant
maps

Yyg—pt.e M (4.3)

the corresponding F} is

Fi = ;4 co N\ J; +O( Qﬂit) (4.4)

where J; is the basis for the Kdhler cone dual to two cycles. And at the conifold point, W
has a nodal singularity with S3 topology and

F = %lntD—&—O(tD) (45)

which is physically explained as the effect of integrating out a non-perturbative hypermul-
tiplet namely the extremal black hole with mass~ tp, whom goes to zero at the conifold
and it couples to the U(1) vector in the N' = 2 vectormultiplet, whose lowest component
is the modulus tp.
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The free energy gives a term
sN=2 — [ @*z2R2F t 4.6
1—loop + (gSa ) ( : )

in N' = 2 supergravity, where R, is the self dual part of the curvature. This term is com-
puted by a one-loop integral [9] in a constant graviphoton background, which depends only
on the left Lorentz quantum number of BPS particles, which is very similar to the normal
Schwinger loop calculation, the latter computes the one-loop effective action in QED, which
comes from integrating out massive particles coupling to a constant background photon.
We first revisit the QED case, for a self-dual background field Fis = F34 = F', one has

® ds Tr(—1)fexp(—sm? 92 F
Sf_loopzlndet(v+m2+2mLF):/ ds Tr(—1)’ exp(—sm?)exp(—2ses I) (47)

e S 4sin?(seF/2)

where (—1)f depends on the massive particle is boson or fermion, and oy, is the Cartan
element in the left Lorentz representation of the particle.

Then we zoom into the N'= 2 SUGRA case, the graviphoton field couples to the mass,
the loop has two R and arbitrary graviphoton insertions, only BPS state with the Lorentz
quantum number

[(;,0) +2(0, 0)] @R (4.8)

(for R an arbitrary representation of SO(4)) contributes to the loop. Microscopic BPS
states in this loop is related to non-perturbative RR states which are the only charged
states in the Type II compactification, comes from ranes wrapping cycles in the Calabi-Yau,
and as BPS states their masses are proportional to their central charge. In the IIB picture,
it was checked with the beta function in [10] there is precisely one BPS hypermultiplet
with the specific Lorentz representation becoming massless at the conifold. In this case the
Schwinger-Loop calculation simply becomes

* ds exp(—st > B 2972 (q g_lBg
rann) = [ o0 =3 () G row 6o

9=2

which is the gap condition.

4.1.3 Second Glance of Quintic

We can now look how [3] successfully calculated the quintic to g = 51 with the holomorphic
ambiguity fixed. For simplicity, the convention of quintic is

5
W = Z xf’ - 5¢%x1x2x3x4$5 =0 (4.10)
i

here, after the calculation of Picard-Fuchs equation, we get the prepotential and the B

period and the Yukawa coupling
-1

Cppp = 1¢_ ” (4.11)
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at the large radius point, we can solve the Picard-Fuchs equation and use them as basis to
treat the prepotential and other symplectic basis results

Fy fBl Q 2F0) — t@t}'(o) ws + cw1 + ewy
(0) o —
no | B2 2| Zy, OF _ | Tz et (4.12)
Xo fAl Q 1 wo
X1 ng Q t w1

From special geometry we also have the Zamolodichikov metric G,;. One key observation
of [3], which origins from [11] is to introduce the following variables

0y )PG., 7 p,—K
4, (V0y)P Gy B, — (¢3¢E e
G,L/”E e K
1
and introduce
P,=C97'F, P =colyncl) (4.14)

a very important result is discovered by defining the variables (u,v1,v2,v3, X) in these
implicit equations.

B=u A=v1—-1—2u By =19+ uv;

2
B3 = v3 — uvg +uv1 X — guX (4.15)

and every Py is a degree 3g — 3 inhomogenenous polynomial of v1, v2,v3, X, where one as-
signs the degree 1,2, 3,1 for vy, ve, v3, X respectively, this greatly simplifies the calculation.
The HAE is expressed as

P,
By Y
-1
o o o 1 o = 0 a0
<&q”ww—ww%“%JFr>a<%4+ZFW%r (4.16)
r=1

this also has a holomorphic ambiguity

Pg:Pg(vl,v27U37X)+f(g)(X) (417)
where
39—3
f9 =3 ax’ (4.18)
i=0

and the 3g — 2 coefficients are fixed by the gap condition around the orbifold point ¢» — 0
and the conifold point ¢y — 1, the constant term is fixed by the leading coefficients in large
complex structure modulus limit ¢ — oo, we use

(=197 Bay By x
12

29(29 ~ 2)(29 - 2) (4.19)

lim FA—model,g =
t—o0
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to fix this.So there are still 3g — 3 left for gap condition.

We first see the result around the orbifold point,it is argued that free energy should be
analytic at the orbifold point, as there are no massless BPS states so the singularity is not
because geometric reasons(so it is not really a ordinary "gap” ). Picard-Fuchs equation
enjoys 4 different power series solution here

orb _ k — ([%]n)S 5 1\n —1 ...
Wit =5 Y S (5Pg)", k=1, 4 (4.20)

n=0 ]571

=

then we need to find the basis and Kdahler potential besides the orbifold point to define
the appropriate coordinate, the method is by doing analytic continuation of the II and

represent it using wzrb

Ey (1—-a)(a—1-a?)
Fy 1/50‘F5(%) %(8*304)(1*04)2 2/5

= O 4.21
X ¥ (2mi)* (1—a+a?) O™ (4.21)
X1 %(1 — Oé)3

where a = exp( %) The appropriate coordinate is
wgrb
s= o (4.22)

integrating the HAE with the condition and expand the free energies in s, the analytic
constrains is equivalent to the regularity of

P
A (423)
wg(g—l)

which impose

[3(95_1)] (4.24)

constrains.
About the conifold point, the fixing is direct, also begins with the solution of Picard-
Fuchs

¢ 263 8354 7575 6
AN S I SR
c 6
.= | “1 | = — 35 + 155 — 5500 T Taem T O (69) (4.25)
c We 52 _ 2363 + 104954 343438° +0 (56) :
: > 952800 1690l37 500027007(114 152517d°
C C 6
w3 wilog(d) — 55 — 4555 + *Goo00- — easo00- + O (6°)
where 0 = ¢ — 1 and the appropriate value of coordinate is
. w§
tp=— (4.26)
“o
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and all free energies can be changed as tp variable functions

5 . 5 . 5 89 5.\ . .
FO = 20e (ip) 12 + — (1= 6b1) 13 + [ — (b — 3by) — —— — 2p2 | 4 2
log (tp) (233 113b; . 233by 11307  107by, 2681 . .
F{l) I B a0 _ 1 _ 3
conf. 12 120 12 b 120 24 12 7200) 0t O (fp)
@) 1 120373 11413bs 107369  120373b;  23533by  11413b1bs )\ - -
conf. — o - - tp + O (tD)
240#2, 72000 144 150000 36000 720 72
(4.27)
the gap condition is
(9) (—1)97132
cgm‘fold ~ J (4.28)

29g—2
29(29 — 2)t53

this condition fixes 2g — 2 coefficients. However

Mo =Dt oy = 222 (4.2

39—2—(1—1—[

so only g = 2,3 this works. How about the other coefficients? It is proved in [9] and [12]
that there is a algorithm to calculate the GV invariants directly by cohomologu of the
moduli space of Dy — Dy brane system, this is quite hard so we do not give a summary
here. Using this result, [3] gives the calculation to g = 51.

4.2 Short review of Refined Holomorphic Anomaly Equation

Inspired by Nekrasov’s Instanton Counting Algorithm, people developed Refined Topolog-
ical string theory. Later, people realized that Holomorphic Anomaly Equation can be also
generalized to Refined Topological String, which is introduced in [8][7].
The refined partition function is directly introduce as
o
InZ(t,m,e1,€) = Z (€1 + €2)"(e162)9 F(59) (¢, m) (4.30)
n,g=0

which is quite similar to the equivariant instanton partition function of N/ = 2 gauge
theories, in which ¢ is flat coordinates on the vector multiplet moduli space, m is the bare
hyper multiplet masses and €1, €2 are the equivariant rotation parameter acting on the so
called 2 background, which is parameterized by s := (e1 + €2)2. the refined free energies
satisfy for g1 + g2 > 2 a generalized holomorphic anomaly equation

%F(fh 92) —

N

_gk <DjDkF(g1’g2_1) + Z DjF(rl,rz)DkF(Ql—rhgz—m)) (4.31)

71,72

where the prime denotes that the sum over r1, 2 does not include (r1,7r2) = (0,0), (91, 92)-
We can observe that this refined HAE reduced to ordinary HAE when g; = 0. One might be
curious that what is the worldsheet description of refined Holomorphic Anomaly Equation,
but so far the answer is still unknown, it was conjectured that

39—3

Fm9) — / (0" I 87B*)gdm A dm (4.32)

My k=1
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for some specific operator @ which we still don’t know. For some special cases the free
energy can be given explicitly, such as

pnt10) _ <¢(0)(0)¢(0)(1)¢(0)(oo)(’)">g:0
1 b
1,0) _ @
Jal )_ﬂln AHU Hmj]
J J

1 .
FOL — ;I (A“ Hugm? ygigly> (4.33)

for integration of the refined HAE, people introduce propagators that has a quite simple

form

_ L OF(9)
g — ik
O =G s

which implies that F(™9) is a polynomial of S¥ of degree 3(g + n) — 3. The propagators

(4.34)

are overdetermined by a series of equations which is determined by special geometry
DiS* = —CypnS*S"™ + [
rf = —Cip St + I
o FOD = %cijksﬂf + A;
(4.35)

the gap condition comes from Schwinger Loop computation near the conifold point

* ds exp(—st)
Sat = - . . O 1
Fls:95:1) /0 s 4sinh(se1/2)sinh(sea/2) +00)
1 1 2 -1 1 o~ (29 -3)! o 2g—2m 2m
— [_12 + ﬁ(el + €2)“(e1€2) } In(t) + v gEO 122 mgo BoyBag—2€; am ...

(4.36)

— 36 —



A Riemann Surface Moduli

We super shortly revise some conclusions about moduli of Riemann Surfaces, for people
who almost forget everything about it, like me.
First, definition. M, is a set of isomorphism classes of genus g and n marked points.

Mg = {Riemann surfaces with (g,n)} /iso. (A1)

where the isomorphism is a biholomorphism that maps marked points to marked points.

Shape, Hurwitz’s theorem states that the isomorphism group of any Riemann surface
satisfying 2g — 2 + n > 0 is finite, this type of Riemann surfaces is named stable. Almost
all of our discussion is in this part, for it actually exclude only 4 possible trivial cases. And
all other moduli spaces are connected, smooth, complex orbifold of dimension

dim(Mgyp,) =3¢g—3+n (A.2)
and Harer-Zagier find its Euler characteristic number

X(Mgn) = (1 = 29)n-1¢(1 — 2g9) (A.3)

In two dimension, the conformal transformation are equivalent to holomorphic transfor-
mations, so a tangent vector of the moduli space is an infinitesimal change of complex
structure,which is parameterized by the Beltrami Differential

dz — dz + epidz (A.4)

B Special Geometry

We start with elements of the theory, which apply to the complex moduli spaces of Calabi-
Yau spaces of any dimensions namely the Weil-Petersson metric on the complex moduli
space M, ,exists since the Tian-Todorov theorem the moduli space of Calabi-Yau mani-
folds is unobstructed. The Kdhler potential

e K =" (0, Q) (B.1)
We have Griffith transeversality
0iQ = i (2)Q, + xs = H @ H* 1 (B.2)
With the notation
CMZ'(Z) = —Ki = —@K (B3)
we have results
— Ke = ale_K
Dan (az + Kz)Qn =Xi € H" L1
D;Q,, = (0; + K;)Q i= i (B.4)
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second line as the basis of deformation space of complex structure.We also know there is a
gauge transformation for the nonvanishing form

Q(z) = fP(2) (B.5)
the Kdahler form transforms then in the Kdhler line bundle with Kdhler transformations

K(z,2) = K(z,2) — f(2) — f(2) (B.6)

K

where e~ X is a section of £ ® L ,this gauge transform generates a natural connection. We

end with the correlation function here is purely holomorphic
(Diy +Di Q0 Q) = (04, -+ O,y ) (B.7)

this is because other deformed terms can’t survives the matching. So non-stringy cases,
we have

5:Ciy.i, =0 (B.8)

C Modular Forms
Any genus one curve can be represented in Weierstrass normal form
y® = 4z® — go(u, mi)x — g3(u, m;) (C.1)

where u is the true modulus or the curve which corresponds to the complex structure
modulus and m; denote possible isomonodromic deformations. The coefficents enjoys a
rescaling symmetry and exists an r that rescales them to the Eisenstein Series.

g2 — 7“492 g3 — 7“693
Ey=12rtgy Eg=216r%g3  Aoq = r'?Agis
1

Dot = Tz (BY() = B(7)) Aaiw = gh(u,ms) = Mghwm)  (C2)

and the associated j function is

j= E3(7)

1
=) D 744 4 196884 + - - - (C.3)
E}(r) - E3(1) ¢

Any genus two curve can be represented as hyperelliptic curve

6
b3S 4 vga? — vsz 4 vg = H(ZL‘ —\) (C.4)
i=1

6

y2 = voxr — v1x5 + vox

just like the invariants for ¢ = 1, we also have invariants for g = 2, and I’'m not going to
type them here, I just paste the graph here.
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A=6V2 — 180214 + 400, v5 — 2400y v,

B =48vg vz‘ +4vi yi —12v3vs5 ui +300vq ug vo +4vyvavsv2 — 1800 v3vg U2 — 504 V9 U4 VGV + 48!}002
—12v14 U4 801«'1 1)5 + 182{)!}0 UG +361, u__, U5 —180vgusv s + 3241)005 Vg +300v% V4 Vg
—540vyv, V5 Vg,

C= —36ur yz 160041’)[31/2 24”4% Elﬁb'(]r)hvZ +751;5r)4r)ryz +6(]Uj uhyZ +6161; U5I;byj
+8Uj u4 "z + 261 ujyévz —640vg14 uéuz —9000fyévj—24u3y5vz +28w1 u4 D'5D'§
+424y0y4 Ug uz +492v V30,08 yz —876vgu3Us uﬁvz - 150!)01)2 v+ 76003 uf Vs
+1600vp1 ug 2 + 3301y u§ UE U2 + 64 uf vy U% vs + 3060 Vs ué v + 20664 vg in vé s
+492vgv3 u:‘;‘ vsv2 — 2381, ui Va5V — 1981 vg' vgls — 640 1’1 V4 vgv2 — 18600 ”u v5 UVgla
—4681)01;3 Uy Ugla — 1860!)1 V3Us Vgl + 3472091 Vg Us Vg U2 —36vl u4 +6{]uuv3 u4 —320!)1 ur
+225003 U3 U2 — 11988003 vg — 240, v3 V2 + 17602 V3 12 — 90003 v3 U2 — 18600V, U314 V2
— 100442 v2 v + 225003 v3 02 — 1860000 v 14 vE + 5994003 v1 V5 VE + 7211 V3 15 + 6161011 V3 U5
+26r)1 U3 vi vs —198vq uj vaV5 + 16210 uj vbfgﬁvﬂ u4 Vg — 876vp1 U3 vi v — 22400 uf vé Vg
+330vf u% vyvg+ 18181y vé VsVg+ 16001}1 VaUslg +3060uu U3 U4 Vs Vg,

D =v3A.

Figure 15.

which are called Igusa invariants.
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