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0 Introduction

What makes Topological supersymmetric models become Topological string theory is grav-

ity shows up, and what makes topological string theory simple and powerful is its correlation

function is simple enough to calculate to arbitrary loops, up to a ambiguity.

Holomorphic Anomaly Equation(HAE) is the proper relation describing this process,

we can even say that almost all calculable stringy effects of Topological string comes from

HAE. We know properties like mirror symmetry or chiral ring is merely a supersymmetric

effect, and after we extend our theory to string theory, many of them persists but some of

them changes, those changes are coded in HAE.

This note is organized as follow: We first revisit the B model without gravity in

Chap1, a very short remind of special geometry is in the appendix. We derive the HAE in

Chap2. We then solve the HAE and make some comments of its properties in Chap3 and

Chap4. We mainly follows BCOV’s long paper (they have two), other references are in the

bibliography part.

1 Twisted N = 2 revisited

We shall quickly revisit the properties of N = 2 theory, properties of tt∗ equation,and

couple it to topological gravity, where we will see why Calabi-Yau threefold is special and

essential for our definition of B model.

We will use the notation of the original BCOV paper,which may have some difference

with other references, but results are the same. It’s well known that mirror symmetry

can be manifested in N = 2 (more specifically ,N = (2, 2)), but in order to discover

more property of mirror symmetry and made the theory a string theory, we consider the

superconformal N = 2 (specifically, N = (2, 2)) now.

1.1 Vacuum geometry and twisting of N = 2 theories

1.1.1 Topological twist and Chiral ring

Superconformal N = 2 theories have four supercharges and two U(1) currents, as the R

symmetry

G±, Ḡ±, J, J̄ (1.1)

where we note left ones as the one without bar, right with bar ,satisfying these relation

(left, but right are similar)

(G±)2 = 0

{G+, G−} = 2HL

[G±, HL] = 0 (1.2)

and we have two equivalent choice of composed supercharge as cohomology operator, as

the A and B model

Q1 = G+ + Ḡ+ Q2 = G+ + Ḡ− (1.3)
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we can define the cohomology field theory

[Q,ϕ] = 0 ϕ ∼ ϕ+ [Q,Λ] (1.4)

In our notation, satisfying this condition for Q1 is named (c, c) and Q2 is named (c, a),

we should remember Q†
1 and Q†

2(named as (a, a),(a, c)) gives the isomorphic spectrum of

fields, only differ by a J̄ → −J̄ , so we can only consider Q1 for simplicity. N = (2, 2) chiral

primary operator has relation between of conformal weight and R-symmetry charges

(hi, h̄i) =
1

2
(qi, q̄i) (1.5)

and the R symmetry charge is bounded by the central charge of superconformal algebra,

we note as ĉ. For the algebraic relation of the chiral ring, we choose the normal notation

ϕiϕj = Ckijϕk + [Q, ·] (1.6)

one specific properties is by viewing the chiral field as the first component of a superfield,

also named as the descend equation. We can modify the action by perturbing the action

in these chiral fields

ti
∫
d2zd2θ+ϕi + t̄i

∫
d2zd2θ−ϕ̄i = ti

∫
d2zϕ

(2)
i + t̄i

∫
d2zϕ̄

(2)
i (1.7)

where ϕ
(2)
i = {G−, [Ḡ−, ϕi]} are result of the descend equation.We recall:

[Q,O(0) = 0 {Q,O(1)} = dO(0)

[Q,O(2)] = dO(1) dO(2) = 0 (1.8)

why is this interesting: consider

[Q,

∫
Σ
O(2)] =

∫
Σ
[Q,O(2)] =

∫
Σ
dO(1) = 0 (1.9)

which implies
∫
ΣO(2) are Q invariant operators. Moreover, if we start with an operator of

degree (1, 1), we end up with an operator that has vanishing vector and axial charges, this

enables us to freely insert arbitrary many of them, and we will do this thing.

We know that for 2d conformal theory, a natural correspondence between operator and

state is established, and this also works for superconformal theory. However, we should

keep the operator insert on the boundary in R sector and ensure Q as a scalar charge, so

we need the topological twist. We do this in the traditional way, by introducing the R

symmetry current coupling to the spin connection

S → S +
1

2
(

∫
Jω̄ + J̄ω) (1.10)

after the twist, the supercurrentG−(z), Ḡ−(z̄) become (2, 0), (0, 2) weight and ϕi, ϕ̄i become

(0, 0), (1, 1) weight. We thus can inserting the field to boundary and get a corresponding

state

|i⟩ = ϕi|0⟩+Q|·⟩ (1.11)
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remember Q† becomes a scalar in the same time, we can parametrize the same vacua using

anti-chiral field, which is connected to the chiral one by a basis transformation

⟨̄i| = ⟨j|M j
ī

(1.12)

we also has two natural inner products, identifying as the metric on the moduli

ηij = ⟨j|i⟩ gij̄ = ⟨j̄|i⟩ (1.13)

Figure 1.

one of the most important correlation function is the Yukawa coupling

⟨ϕiϕjϕk⟩ = ⟨i|ϕj |j⟩ = C ljk⟨i|l⟩ = C ljkηil := Cjki (1.14)

which implies that Cijk is totally symmetric in indices.

1.1.2 Vacuum Bundle and tt∗ equation

Besides the chiral ring itself, we are interested in seeing how the structure of vacua and

chiral fields deform as we perturb the theory by marginal chiral fields. We remind ourselves

of the vaccum bundle {|i(t, t̄)⟩}, and study how it varies as a function of moduli parameter.

We already know that the chiral ring elements has a dependence on the moduli space, so

it can be seen as a bundle over moduli space, where we are able to deduce a covariant

derivative with respect to this vector bundle.

Figure 2.
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Using the result of [1](this is also stressed in geometry language in appendix), we know

that

∂̄lCijk = 0 (1.15)

one also introduces a connection on the vacuum bundle

Di|j⟩ := (∂i −Ai)|j⟩ (1.16)

as well as Dī|j⟩, there is a interesting matrix relation named tt∗ equation , if we view the

Yukawa coupling as a matrix element Ckij = (Ci)
k
j

[Di, Dj ] = [D̄i, D̄j ] = [Di, C̄j ] = [D̄i, Cj ] = 0

[Di, Cj ] = [Dj , Ci] [D̄i, C̄j ] = [D̄j , C̄i]

[Di, D̄j ] = −[Ci, C̄j ] (1.17)

This is the relation between the deduced connection/covariant derivative and the Yukawa

coupling.

We have a normalization ambiguity of absorbing fermion zero modes, equally trans-

lates to the ambiguity in defining the normalization of the chiral states |i⟩. Consider the

line bundle L over the moduli space generated by the vacuum state |0⟩, two different

normalization of path integral give

|0⟩ → f(ti)|0⟩ (1.18)

which can be viewed as a gauge transformation

A0
i0 → A0

i0 + ∂if (1.19)

And we shall choose the holomorphic gauge

A0
i0 =

∂i⟨0̄|0⟩
⟨0̄|0⟩

= −∂iK (1.20)

since |0⟩ is a section of L , Z0 is a section of of L2 and Zg is a section of L2−2g. Where Zg
is the partition function of genus g worldsheet theory,we can see this result in this graph.

Figure 3.
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Together, all physical observables are independent of the choice of normalization am-

biguity.

We now leave a short comment on metrics on the moduli space, normally we mean

the metric gij̄ defined at the beginning (which is also called the tt∗ metric), but some time

we also use the so called Zamolodchikov metric, which has close relation to the metric gij̄ .

The Zamolodchikov metric is defined as a correlation function of marginal operators,

Gij̄ = ⟨ϕ(2)i (1)ϕ̄
(2)

j̄
(0)⟩ (1.21)

and it is known that this only differs a scaling by Kähler potential with the natural metric

we defined already

gij̄ = e−KGij̄ (1.22)

since naive special geometry definition is e−K = ⟨0̄|0⟩ ,this shows that the so called

Zamolodchikov metric is nothing but a the normalized tt∗ metric. Zamolodchikov met-

ric is regarded as the Weil-Peterson metric on the moduli space, so in some reference it is

also called Weil-Peterson metric.

1.2 Coupling the B model to gravity

There are three steps to be concerned when we coupled a theory with gravity. First we

need to write the Lagrangian in covariant form, so covariant derivative and general metric

can appear. Next we need to add the dynamical metric term(Einstein-Hilbert) into the

total action, therefore graviton can be some dynamical stuff. However, these two steps are

not quite hard comparing to the last: we need to do path integral over all possible metrics.

Follow the inspiration from string theory, we first need to regard all metric connected by

Weyl(conformal) and Diffimorphism as equivalent one, which generally generate a moduli

space of metrics, more over, we are not sensitive with metrics but topology now, so moduli

of all possible Riemann surfaces appear.

One may doubt if there is a conformal anomaly that obstruct us, but we can show this

can be universally solved by topological twist. Since the original Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (1.23)

the nonvanishing central charge results the conformal anomaly.But after the topological

twist

L̃n = Ln −
1

2
(n+ 1)Jn (1.24)

with the algebra

[Lm, Jn] = −nJm+n

[Jm, Jn] =
c

3
mδm+n,0 (1.25)

one can show

[L̃m, L̃n] = (m− n)L̃m+n (1.26)
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which means the general topological strings can be well defined in any dimensional target

space, but we will see why Calabi-Yau threefold is the most important one.

One then borrows the treatment people does in bosonic string theory to B model to

couple it with gravity. We can do the exact identify

(G+(z), J(z), T (z), G−(z)) ↔ (JBRST (z),− : bc : (z), {QBRST , b(z)}, b(z)) (1.27)

and the ghost number of an operator is identified to the axial charge of the B model.We

should note the only condition this identifying works is we have an Calabi-Yau threefold,

since the virtual dimension of complex structure deformation moduli space of Riemann

surface

dimMg = h1(TΣ)− h0(TΣ) = −
∫
Σ
ch(TΣ) ∧ td(TΣ) = 3g − 3 (1.28)

matches with the dimension of stable map moduli space

c1(TM) · β + dimM(1− g) (1.29)

only at c1(TM) = 0 and dimM = 3, this makes the Calabi-Yau threefold not only im-

portant in phenomenological consideration of string theory but mathematically crucial for

defining topological strings. Because only if we choose the target space to be Calabi-Yau

threefold, we realize mirror symmetry in stringy case (as it confirms the A model), and we

are able to put our definition of free energy to higher genus worldsheet.

In bosonic string theory, we use Beltrami differential as basis in the Riemann surface

moduli space, we can do similar thing here, we also remark that we omit the measurement

βk =

∫
Σg

d2zG−µk β̄k =

∫
Σg

d2zḠ−µ̄k (1.30)

and

µg =

〈
3g−3∏
k=1

βkβ̄k

〉
(1.31)

For free energy of the twisted N = 2 theory coupled to gravity at genus g > 1, is defined

Fg =

∫
Mg

µg (1.32)

The condition for Calabi-Yau threefold is important since only for this condition that

Fg, g > 1 can be nonzero.Moreover, we defined the prepotential to be genus 0 free energy,

and genus 1 free energy is defined by the analogy with bosonic string theory

F1 =
1

2

∫
d2τ

Imτ
Tr[(−1)FFLFRq

HL q̄HR ] (1.33)

However, although the analogy between B model and bosonic string is convenient, one

should not recall it with nostalgia, since G− cohomology generates a nontrivial chiral ring,

but b cohomology in bosonic string theory remains trivial, so we remark only coupling to

gravity we can do this analogy.
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2 Holomorphic Anomaly and the Recursion Equation

We now go into the topic of holomorphic anomaly equation, we shall first glimpse its

appearance in n-pt function and holomorphicity paradox in the first subsection, and derive

the holomorphic anomaly equation next. We still follow the original BCOV paper.

2.1 Zamolodchikov derivative and the Holomorphicity paradox

We define the n-point correlation function coupled with gravity, or the topological string

n-point function, the worldsheet has a genus of g

Cgi1i2···in =

∫
Mg

〈∫
ϕ
(2)
i1

· · ·
∫
ϕ
(2)
in

3g−3∏
k=1

(

∫
G−µk)(

∫
Ḡ−µ̄k)

〉
(2.1)

one might think

Cgi1···in = ∂ni1···inFg (2.2)

but this is not true since Cgi1···in is a section of bundle SymnT ⊗ L2−2g(T is the tangent

bundle of the moduli space, for every marginal operator inserted, it is corresponded to a

tangent vector, one can refer to figure 2) and Fg is a section of L2−2g, we formally have

Cgi1···in = Din . . .Di1Fg (2.3)

In BCOV’s second paper, they guessed this Di can be replace by the covariant derivative

Di induce by the Zamolodckikov metric, which implies the following recursion relation,

we state their result and repeat their argue for the relation in the following part of this

subsection, they show that if and only if the formally written covariant derivative is indeed

the natural covariant derivative deduced from special geometry, then the following relation

will be true

e2(1−g)KGj̄1ii · · ·Gj̄n−1in−1Cgi1···in−1in
= ∂in

(
e2(1−g)KGj̄1i1 · · ·Gj̄n−1in−1Cgi1···in−1

)
(2.4)

We have two things to argue about the naturalness that Zamolodchikov metric arises in

the n-point function, which BCOV named as the contact terms argument.

• Firstly, in [2], it is proved in conformal marginal operators, the OPE has the leading

term of

ϕ
(2)
i (z)ϕ

(2)
j (0) ∼ δ2(z)Γkijϕ

(2)
k (0) (2.5)

where Γkij is the Zamolodchikov metric. BCOV also give a tt∗ proof of this conclusion,

they conclude the insertion of ϕ
(2)
i in the correlation is equivalent to∫
ϕ
(2)
i ∼ ∂i − Γi + (. . . ) (2.6)

• Moreover, BCOV also gives a more quantitative result. By calculating the contact

term between the additional term of topological twist and the desired operator ϕ
(2)
i

, they found the contact term has the form

−∂iK
R

2π
(2.7)
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which means for genus g worldsheet∫
ϕ
(2)
i → ∂i − Γi − (2− 2g)∂iK (2.8)

For a specific calculation, a convenient example is the correlations on the sphere. Sphere

enjoys a better isometry symmetry so we are able to fix generic three points to 0, 1,∞
through PSL(2,C) group.

Ci1···in =

〈
ϕi1(0)ϕi2(1)ϕi3(∞)

∫
ϕ
(2)
i4

· · ·
∫
ϕ
(2)
in

〉
(2.9)

we check if this correlation is holomorphic

∂̄j̄Ci1···in =∫
√
gd2z

〈
ϕi1(0)ϕi2(1)ϕi3(∞)

∫
ϕ
(2)
i4

· · ·
∫
ϕ
(2)
in

∮
C′

z

G+

∮
Cz

Ḡ+ϕ̄j̄(z)

〉
(2.10)

where Cz and C
′
z are small contours enclosing the point z. Now we can deform the C

′
z

countour around the other operator insertions. Since∮
Cw

G+ϕi(w) = 0∮
CW

G+ϕ
(2)
i = dϕ

(0,1)
i (2.11)

then formally we get

∂̄j̄Ci1···in =

−
n∑
k=4

∫
√
gd2z

〈
ϕi1(0)ϕi2(1)ϕi3(∞)

∫
ϕ
(2)
i4

· · ·
∫
dϕ

(0,1)
ik

· · ·
∫
ϕ
(2)
in

∮
Cz

Ḡ+ϕ̄j̄(z)

〉
= 0

(2.12)

However, we have another approach directly from tt∗ equation, which leads to a paradox

and finally leads to the Holomorphic anomaly equation. The paradox comes from the com-

mutator [∂̄j̄ , Di] doesn’t vanish, which implies the curvature of the natural Zamolodchikov

connection do not vanishes. For instance, we can consider the 4-point function

Cijkl = DlCijk (2.13)

if ∂̄Cijk = 0, we have

∂̄m̄Cijkl = ∂̄m̄DlCijk = [∂̄m̄, Dl]Cijk =

= 2Glm̄Cijk − (Rnlm̄iCnjk + permutations) ̸= 0 (2.14)

and this situation is even worse for higher genus conditions. BCOV explains this paradox

by arguing that although we can freely insert operators like
∫
dϕ

(0,1)
i , these terms do not

vanish upon integration over the Riemann surface, because the corresponding integral gets

a nontrivial boundary term when the field ϕ
(0,1)
i approaches a point where some other

operator is inserted. To sum up, ∂̄j̄Ci1···in may get a contribution only from the boundary

of M0,n, and since this boundary corresponds to two operators colliding, we see that the

n-point function may fail to be holomorphic only because of contact terms.
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2.2 The Holomorphic Anomaly Equation

We know that ∂̄j̄Ci1···in gets a contribution from the Riemann moduli’s boundary, it is

not surprising that ∂̄j̄C
g
i1···in also gets a contribution only from the boundary of the moduli

spaceMg,n. Since this case the boundary is more complicated, we eventually get a recursion

relation coding how these contributions connects to each other.

2.2.1 BRST invariance violation check

Another understanding is by the violation of BRST invariance, since classically it is sure

that partition function and correlation function are holomorphic on the moduli space with

respect to BRST invariance.

We examine the violation of ∂̄īFg = 0 now, taking derivative of t̄ī is generated by a

insertion of anti-chiral field ϕ̄ī

∂

∂t̄ī
Fg =

∫
Mg

〈∮
Cw

G+

∮
C′

w

Ḡ+ϕ̄ī(w)

3g−3∏
k,k̄

βkβ̄k̄

〉
· [dm ∧ dm̄]

=

∫
Mg

4

3g−3∑
īi=1

∂2

∂mi∂m̄i

〈
ϕ̄ī
∏
k ̸=i

βk
∏
k̄ ̸=ī

βk̄

〉
· [dm ∧ dm̄] (2.15)

We give a short remark of how this is derived, first using the OPE

G+(z)G−(w) ∼ 2T (z)

z − w
+ · · · →

∮
Cw

dzG+(z)G−(w) = 2T (w) (2.16)

and then convert T and T̄ into derivatives with respect to the moduli m, m̄,which comes

from a first order deformation of worldsheet metric (after be quotiented by Weyl&Diff):

∫
Σ
d2σ

√
hδ̃habTab =

∫
Σ
dzµ

(a)z
z̄ δmaTzz + µ̄az̄z δm̄

aT̄zz (2.17)

after we insert this into

δh⟨O⟩g = ⟨O
∫
Σg

√
hd2σδhµνTµν⟩g (2.18)

we have

∂

∂ma
Og = ⟨O

∫
Σ
d2zµa zz̄ Tzz⟩g := ⟨OT a⟩g (2.19)
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2.2.2 Deriving the Holomorphic Anomaly Equation

Figure 4.

Back to the theme by viewing the above calculation, BCOV noticed that the integral

obtained by ∂̄īFg can be expressed by a integral on the boundary of Mg. The boundary of

Mg consists of
[
1
2g
]
+1 irreducible components Dr

g r = 0, 1, · · · ,
[
1
2g
]
. Surface belonging to

D0
g are such that they become connected surfaces of genus (g−1) with two punctures upon

removal of the nodes.Moreover, Dr
g consists of surfaces which become upon removal of the

nodes, two disconnected surfaces, one of genus r and one of genus (g − r), each with one

puncture.We will see them as follow. We remark that in some reference these two classes

are named as A and B type sewing, like in Klemm’s note, one should not confuse them

with A and B model.

We first deal with D0
g , surface sitting near D0

g has a long tube which becomes a node

as the surface approaches D0
g . Thus we can choose coordinates near D0

g as (τ,m
′
, z, w)

where τ is the moduli of the tube and (m
′
, z, w) are moduli of a genus (g − 1) surface

with two puncture, where z, w for punctures, m
′
as ordinary moduli space coordinate.

Since the second order derivative of m, m̄ in ∂̄īFg, at the boundary we will be left with

a derivative in the direction normal to D0
g ,which is ∂

∂Imτ . Together in the limit τ → ∞,

the Beltrami-differentials µ(z) and µ(w) associated to the moduli z, w localized near the

punctures ∫
µ(z)G− →

∮
Cz

G− (2.20)

and those associated to m
′
reduce to µ

′
on Σg−1, the total contribution to ∂̄īFg from D0

g is

∫
D0

g

[
dm

′
, dz, dw

] ∂

∂Imτ

〈∫
Σg

ϕ̄ī

∮
Cz

G−
∮
C′

z

Ḡ−
∮
Cw

G−
∮
C′

w

Ḡ−
3g−6∏
a=1

∫
Σg−1

µ
′
aG

−
∫
Σg−1

µ̄
′
aḠ

−

〉
(2.21)

The term ϕ̄ī has two probable location, on the tube or outside the tube, as the graph

follows. And we will examine the two cases.
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Figure 5. Figure 6.

For the first case, when we approach τ → ∞ limit, the tube is projected to ground state

so the nodes are represented by insertions of ϕj(z) and ϕk(w) , and the tube is replaced by

ηjk ,the integrand is

∂

∂Imτ
ηjk

〈∮
Cz

G−
∮
C′

z

Ḡ−ϕj(z)

∮
Cw

G−
∮
C′

w

Ḡ−ϕk(w)

∫
Σg−1

ϕ̄ī

3g−6∏
a=1

∫
Σg−1

µ
′
aG

−
∫
Σg−1

µ̄
′
aḠ

−

〉
(2.22)

this turns out to be zero since the latter part do not depend on τ , as defined on Σg−1. For

the second case, the node is represented by an insertion of

ϕjη
jj

′
⟨j′ |

∫
ϕ̄ī|k

′⟩ηk
′
kϕk(w) (2.23)

Since

⟨j|ϕ̄ī|k⟩ = ⟨j̄|ϕ̄ī|k̄⟩M
j̄
jM

k̄
k = C̄īj̄k̄e

2KGj̄j
′
Gk̄k

′
ηj′jηk′k (2.24)

is independent of the position of ϕ̄ī, a trick without rigorous is by approximating the

integral result as the volume of the tube, which is Imτ , and the insertion is

ϕj(z)C̄īj̄k̄e
2KGjj̄Gkk̄ϕk(w)

∫
1 ∼ ϕj(z)C̄īj̄k̄e

2KGjj̄Gkk̄ϕk(w)Imτ (2.25)

this volume cancels with ∂
∂Imτ , making the integrand

C̄īj̄k̄e
2KGjj̄Gkk̄

〈∮
Cz

G−
∮
C′

z

Ḡ−ϕj(z)

∮
Cw

G−
∮
C′

w

Ḡ−ϕk(w)

3g−6∏
a=1

∫
Σg−1

µ
′
aG

−
∫
Σg−1

µ̄
′
aḠ

−

〉
(2.26)

the result of the integral is

1

2
C̄īj̄k̄e

2KGjj̄Gkk̄DjDkFg−1 (2.27)

this is not hard to find out with these two remarks:1.Remember the insertion of
∫
ϕ(2) can

be replaced by Dj , 2.The coefficient 1
2 comes from the symmetry of exchanging z and w.

There are some subtleties: as the selection rule comes from zero mode counting affects, we

have to restrict

qj + qk + qi = q̄j + q̄k + q̄i = 3 (2.28)

since qi = q̄i = 1, the only choice of qj , qk that do not annihilated by G+, G− is (qj , q̄j) =

(qk, q̄k) = (1, 1), correspond to the marginal deformations of the twisted N = 2 model,

which ensures this calculation.
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We then deal with Dr
g, recall that a surface in the neighborhood of Dr

g has a long tube

which connects two disconnected surfaces Σr and Σg−r, thus we can choose coordinates near

Dr
g as (τ,m

′
, z,m

′′
, w) where τ still characterizes the tube, and (m

′
, z) ∈ Mr,1, (m

′′
, w) ∈

Mg−r,1. The non-vanishing contribution comes from this graph

Figure 7.

as

ϕjη
jj

′
⟨j′ |ϕ̄ī|k

′⟩ηk
′
kϕk(w) = C̄īj̄k̄e

2KGj̄jGk̄kϕj(z)ϕk(w) (2.29)

inserting to the integral, the result is

C̄īj̄k̄e
2KGj̄Gk̄k

∫
Mr

〈∫
ϕ
(2)
j

3r−3∏
a=1

∫
µ

′
aG

−
∫
µ̄

′
aḠ

−

〉
Σr

〈∫
ϕ
(2)
k

3(g−r)−3∏
a=1

∫
µ

′′
aG

−
∫
µ̄

′′
aḠ

−

〉
Σg−r

(2.30)

perform similar calculation, we obtain

C̄īj̄k̄e
2KGj̄jGk̄kϕj(z)ϕk(w)DjFrDkFg−r (2.31)

We nearly obtain the HAE, with some final remarks: as r = 1
2g, there is a symmetry

between Σr and Σg−r, so a factor 1
2 is required, for even g, it’s

[ 1
2
g]∑

r=1

C̄īj̄k̄e
2KGj̄jGk̄kDjFrDkFg−r (2.32)

and for odd g, it’s

1
2
g−1∑
r=1

C̄īj̄k̄e
2KGj̄jGk̄kDjFrDkFg−r +

1

2

[ 1
2
g]∑

r=1

C̄īj̄k̄e
2KGj̄jGk̄kDjF 1

2
gDkF 1

2
g (2.33)

a usual convention is to summarize in a general form

1

2

g−1∑
r=1

C̄īj̄k̄e
2KGj̄jGk̄kDjFrDkFg−r (2.34)

We combine the above calculation, obtain the Holomorphic Anomaly Equation

∂̄īFg =
1

2
C̄īj̄k̄e

2KGj̄jGk̄k(DjDkFg−1 +

g−1∑
r=1

DjFrDkFg−r) (2.35)
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Last in this subsubsection, we give a short remark on the master equation, which is a

general form that combines g ≥ 2 HAE to one single equation. For summed free energy

F =
∑
g

Fgg
2g−2
s (2.36)

If we define

D̂jF =
∑
g

g2g−2
s DjFg (2.37)

then

(∂̄ī − ∂̄īF1)e
F =

g2s
2
C̄īj̄k̄e

2KGj̄jGk̄kD̂jD̂ke
F (2.38)

is the summing of all genus HAE. We know that eF has a meaning of partition function,

and in some literature, it is also named as ”wave function” for string field theory reasons.

2.3 More Remarks About HAE

We shortly glimpse other results BCOV paper covers.

2.3.1 Integrability of HAE

We shortly go over BCOV’s result on the integrability of HAE, which is sufficient to prove

[dī, dj̄ ] = 0 (2.39)

where

dī = ∂̄ī − ∂̄īF1 −
g2s
2
C̄īj̄k̄e

2KGj̄jGk̄kD̂jD̂k (2.40)

We can directly see this definition comes from the master equation of HAE, which ensures

dīe
F (2.41)

can be directly integrated. And the proof of the commutator to be zero is even stronger

than integrability.BCOV proves this relation by using the following relations

[∂̄ī, Dj ]
l
k = −Gījδlk −Gīkδ

l
j + CjkmC̄īl̄m̄e

2KGmm̄Gl̄l

C̄īj̄k̄ = C̄j̄īk̄ DīC̄j̄k̄l̄ = Dj̄C̄īk̄l̄ ∂iC̄j̄k̄l̄ = 0 (2.42)

and by inserting the definition of F1

∂i∂̄j̄F1 =
1

2
TrCiC̄j̄ −

χ

24
Gij̄ (2.43)

after complicate calculations which we omit here, we finally get

[dī, dj̄ ] =
g2s
2

[
C̄īk̄l̄e

2KGk̄kGl̄lTr(DkCl)C̄j̄ − (̄i↔ j̄)
]
= 0 (2.44)
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2.3.2 HAE of correlation functions

Recall that

C
(g)
i1···in = Di1 · · ·DinFg (2.45)

One direct but not simple thought is to generalize Holomorphic Anomaly Equation to

correlation functions, and we expect that this generalize form of HAE can come back to

the ordinary HAE in a specific limit.

To calculate the desiring ∂̄īC
(g)
i1···in , we notice that are two types of contributions. First

one is similar to the ordinary HAE, from the boundary of Mg,n, the only difference is the

moduli of a genus g surface with n punctures. Second one is since many ϕ̄ī is present, we

also need to deal with what happen if ϕi approach them.

We first consider the first type of contribution, by introducing the result that bound-

ary of Mg,n has two irreducible components D(0)
(g,n) and D(r,s)

(g,n), where r and s represent

how many genus and punctures does the boundary components have respectively. From

topological considerations, simple properties are

D(0,0)
(g,n) ≃ D(0,1)

(g,n) ≃ ∅

D(r,s)
(g,n) ≃ D(g−r,n−s)

(g,n) (2.46)

Surfaces belonging to D(0)
(g,n) become connected surface of genus g− 1 with n+2 punctures

upon removal the node. And surfaces belonging to D(r,s)
(g,n) become two disconnected surfaces,

one of genus r with (s+1) punctures, another of genus (g− r) with (n− s+1) punctures.

Their graph are as follow respectively

Figure 8. Figure 9.

the total contribution is

1

2
C̄īj̄k̄e

2KGjj̄Gkk̄C
(g)
jki1···in+

1

2
C̄īj̄k̄e

2KGjj̄Gkk̄
g∑
r=0

n∑
s=0

1

s!(r − s)!

∑
σ∈Sn

C
(r)
jiσ(1)···iσ(s)

C
(g−r)
jiσ(s+1)···iσ(n)

(2.47)

where

C
(0)
i1···in = Di1 · · ·Din−3Cin−2in−1in (n ≥ 3)

C(0) = C
(0)
i = C

(0)
ij = 0 (2.48)
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According to BCOV paper, the second type of contribution is viewed as some curvature

singularity, each has the form

±2

n∑
s=1

GīisC
(g)
i1···is−1is+1···in (2.49)

since the integral around the surface has∫
R = −2π(2g − 2 + n− 1) (2.50)

the total HAE for correlation functions is

∂̄īC
(g)
i1···in =

1

2
C̄īj̄k̄e

2KGjj̄Gkk̄C
(g)
jki1···in+

1

2
C̄īj̄k̄e

2KGjj̄Gkk̄
g∑
r=0

n∑
s=0

1

s!(r − s)!

∑
σ∈Sn

C
(r)
jiσ(1)···iσ(s)

C
(g−r)
jiσ(s+1)···iσ(n)

−

− (2g − 2 + n− 1)

n∑
s=1

GīisC
(g)
i1···is−1is+1···in (2.51)

when n = 0 this returns to the anomaly equation for free energy. One interesting thing for

this HAE is this is also valid for g = 0 and g = 1 case, which reduces to special geometry

relations. This is why HAE is the quantitative characterize of quantum special geometry.

There is also a master equation for correlation function HAE, if we consider the mod-

ified partition function (xis are separate variables, one should not confuse with power)

W =
∞∑
g=0

∞∑
n=0

1

n!
g2g−2
s C

(g)
i1···inx

i1 · · ·xin + (
χ

24
− 1) ln gs (2.52)

the master equation is

∂̄īe
W =

[
g2s
2
C̄īj̄k̄e

2KGjj̄Gkk̄
∂2

∂xj∂xk
−Gījx

j

(
gs

∂

∂gs
+ xk

∂

∂xk

)]
eW (2.53)
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3 Integration of Holomorphic Anomaly Equation

BCOV not only gives the HAE itself, but also a method to obtain its solution, and the key

object occurs in solving this recursion relation is the Holomorphic Ambiguity.

∂̄īA = ∂̄īB ⇒ A = B + f(z) (3.1)

3.1 the Feynman Rules and direct integration

3.1.1 g = 2 and g = 3

To make it simple, we start by integrating F2, the genus 2 case reads

∂̄īF2 =
1

2
C̄īj̄k̄e

2KGjj̄Gkk̄ (Dj∂kF1 + ∂jF1∂kF1) (3.2)

Since the Yukawa coupling is totally symmetric in its indices and satisfies

DīC̄j̄k̄l̄ = Dj̄C̄īk̄l̄ (3.3)

we can always integrate the Yukawa coupling locally as

C̄īj̄k̄ = e−2KDīDj̄ ∂̄k̄S (3.4)

where S is a local section of L−2, so

C̄jk
ī

:= C̄īj̄k̄e
2KGjj̄Gkk̄ = ∂̄īS

jk (3.5)

where Sjk = Gjj̄Gkk̄∂̄j̄ ∂̄k̄S . We then write the genus-2 equation using Sjk, using the

Leibniz rule

∂̄ī

[
F2 −

1

2
Sjk(Dj∂kF1 + ∂jF1∂kF1)

]
= −1

2
Sjk∂̄ī(Dj∂kF1 + ∂jF1∂kF1) (3.6)

Using the relation of [∂̄ī, Dj ], we can obtain the right hand part as

−1

2
C̄mnī Sjk

(
1

2
Cnmjk + Cmnj∂kF1 + Cjkm∂nF1

)
+
χ

24
Sj
ī
∂jF1 (3.7)

using the Leibniz rule again

∂̄ī

[
F2 −

1

2
Sjk(Dj∂kF1 + ∂jF1∂kF1) +

1

4
SmnSjk

(
1

2
Cnmjk + 2Cmnj∂kF1

)
− χ

24
Sj∂jF1

]
=

1

4
SmnSjk∂̄ī

(
1

2
Cnmjk + 2Cmnj∂kF1

)
− χ

24
Sj ∂̄ī∂jF1 (3.8)

it is observed that the right hand side can be witten in a form of total derivative

1

4
SmnSjk∂̄ī

(
1

2
Cnmjk + 2Cmnj∂kF1

)
− χ

24
Sj ∂̄ī∂jF1

= ∂̄ī

[
SjkSpqSmn

(
1

8
CjkpCmnq +

1

12
CjpmCkqn −

χ

48
SjCjklS

kl +
χ

24
(
χ

24
− 1)S

)]
(3.9)
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this means we finally get

∂̄īF2 = ∂̄ī [A lot of terms] (3.10)

One gets a long but exact expression, up to an ambiguity, of F2 (C
(1)
i1···in meansDi1 · · ·DinF1)

F2 =
1

2
SijC

(1)
ij +

1

2
C

(1)
i SijC

(1)
j − 1

8
SjkSmnCjkmn −

1

2
SjkCijmS

mnC(1)
n +

χ

24
SiC

(1)
i

+
1

8
SijCijpS

pqCqmnS
mn +

1

12
SijSpqSmnCipmCjqn −

χ

48
SiCijkS

jk +
χ

24
(
χ

24
− 1)S + f2(t)

(3.11)

this expression can be also expressed in Feynman diagram like worldsheet cobinations.

Figure 10.

this method also works for g = 3 and even higher, but the expression is so long and I

will not type the full expression here, ,by omitting some terms, the Feynman diagram for

g = 3 is

Figure 11.
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and the corresponding expression is

F3 =
1

2
SijC

(2)
ij + C

(1)
i SijC

(2)
j + (

χ

24
+ 2)SiC

(2)
2 + 2F2S

iC
(1)
i − 1

2
SijCijkS

klC
(2)
l

−1

4
SijSklC

(1)
ijkl −

1

2
SijC

(1)
ijkS

klC
(1)
l − 1

4
SijSklC

(1)
jl C

(1)
jl + · · · · · · · · ·+ f3(t) (3.12)

for upper cases, we know we can sum up the graphs according to Feynman rules, we have

three types of propagators and many vertices, for propagators

Kij = −Sij , Ki,φ = −Si, Kφ,φ = −2S (3.13)

and many vertices, we generally define as

C̃
(g)
i1···in,φm+1 = (2g − 2 + n+m)C̃

(g)
i1···in,φm

C̃
(g)
i1···in = C

(g)
i1···in , C̃(1)

φ =
χ

24
− 1

C̃
(0)
φm = 0, C̃

(0)
i,φm , C̃

(0)
ij,φm = 0, C̃(1) = 0 (3.14)

It’s still tolerable for g = 2 or g = 3 to write all possible vertices and propagators, but

it’s quite difficult to generally write all vertices and propagators for higher genus, BCOV

developed a generating function of all possible vertices and propagators, by reducing the

Feynman rule to the Schwinger-Dyson equation of the finite dimensional system.

3.1.2 arbitrary g

Recalling the master equation for HAE of correlation function,

∂̄īe
W =

[
g2s
2
C̄īj̄k̄e

2KGjj̄Gkk̄
∂2

∂xj∂xk
−Gījx

j

(
gs

∂

∂gs
+ xk

∂

∂xk

)]
eW (3.15)

Beside of the quantity W , BCOV introduces a generating function W̃ of all vertices

C̃
(g)
i1···in,φm ,

W̃ (gs, x, φ, t, t̄) =
∞∑
g=0

∞∑
n,m=0

1

n!m!
gg−1
s C̃

(g)
i1···in,φmx

i1 · · ·xinφm (3.16)

and there is a relation between W̃ (gs, x, φ, t, t̄) and W (gs, x, t, t̄), explicitly,

W̃ (gs, x, φ, t, t̄)

=

∞∑
g=0

∞∑
n

1

n!
g2g−2
s C

(g)
i1···inx

i1 · · ·xin
(

1

1− φ

)2g−2+n

+ (
χ

24
− 1) ln

(
1

1− φ

)
=W

(
gs

1− φ
,

x

1− φ
, t, t̄

)
−
( χ
24

− 1
)
ln gs (3.17)

thus W̃ has a similar master equation

∂̄īe
W̃ =

[
g2s
2
C̄jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂φ

]
eW̃ (3.18)
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another similar generating function coding all propagators, where ∆ is the inverse of

K,defined by

Sij∆jk + Si∆kφ = −δik
Sij∆jφ + Si∆φφ = 0

Si∆ij + 2S∆jφ = 0

Si∆iφ + 2S∆φφ = −1 (3.19)

and the generating function is

Y (gs, x, φ, t, t̄) = − 1

2g2s

(
∆ijx

ixj + 2∆iφx
iφ+∆φφφ

2
)
+

1

2
ln

(
det∆

g2s

)
(3.20)

satisfying

∂̄īe
W̃ =

[
−g

2
s

2
C̄jk
ī

∂2

∂xj∂xk
−Gījx

j ∂

∂φ

]
eW̃ (3.21)

By considering the integral

Z =

∫
dxdφexp(Y + W̃ ) (3.22)

this integral is regarded as a partition function of a finite dimensional quantum system,

and the dynamical degree of freedom are xi and φ. The perturbative expansion of Z can

be obtained by Feynman rules of xi and φ,

lnZ =
∑
g

g2g−2
s

[
Fg −

1

2
SijC

(g−1)
ij − 1

2

g−1∑
r=1

C
(r)
i SijC

(g−r)
j + · · ·

]
(3.23)

another interesting corollary is

∂̄īZ = 0 (3.24)

which indicates that

Fg = −(Feynman , nonholomorphic) + holomorphic ambuguity (3.25)

is the exact form of all Fg s.

3.1.3 Short Remark on S, for construction of propagators

We can always integrate the Yukawa coupling locally as

C̄īj̄k̄ = e−2KDīDj̄ ∂̄k̄S (3.26)

and this S can also be explicitly constructed. Using the definition of Kähler metric and

Kähler curvature relation

Rkij̄l = −∂̄j̄Γkil = Gij̄δ
k
l +Gkj̄δ

k
i − CilmC̄

km
j̄ (3.27)

the original formula can be rewritten as

∂̄ī

[
SjkCklm

]
= ∂̄ī

[
∂lKδ

j
m + ∂mKδ

j
l + Γjlm

]
(3.28)
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this can be easily integrated as

SijCjkl = δil∂kK + δik∂kK + Γikl + f ikl (3.29)

where f is a meromorphic section of L, which can be expressed as

f ikl = δil∂k ln f + δik∂l ln f −
n∑
a=1

vl,a∂kv
i,a + f̃ ikl (3.30)

{vi,a}a=1,··· ,n are meromorphic tangent vectors which are linearly independent almost ev-

erywhere on the moduli space, and vi,a are inverse of vi,a, f̃ is a meromorphic section of

T ×Sym2T ∗. f and v are generally determined by regularity condition of Kähler potential

and metric, as for propagator expression belows, we have invariant combination eK |f |2 and
G11̄|v|2. We can see this more clear in the quintic case below.

Generally Sij has 1
2n(n + 1) variables but relation (3.29) has 1

2n
2(n + 1) constrains,

which force people to ensure the choice of f̃ is appropriate.

For case that we only have one modulus, the equation is greatly simplified and the

solution is easy to obtain, we can choose f̃ to be 0, the propagators are given as

S11 =
1

C111
∂ ln

[
2∂ ln

(
eK |f |2

)
− (G11̄v)

−1∂(vG11̄)
]

S1 =
1

C111

[(
∂ ln(eK |f |2)

)2 − v−1∂(v∂ ln(eK |f |2))
]

S =

[
S1 − 1

2
D1S

11 − 1

2
(S11)2C111

]
∂ ln(eK |f |2) + 1

2
D1S

1 +
1

2
S11S1C111 (3.31)

for general moduli, we have a special solution of S, but actual computation of propagators

are extremely miscellaneous

S =
1

2

[
(n+ 1)Si −DjS

ij − SijSklCjkl

]
∂i ln(e

K |f |2) + 1

2n

(
DiS

i + SiSjkCijk

)
(3.32)

3.2 Explicit Examples

We will give some examples below. In these case, we can see how higher loop partition

function is explicitly calculated in a recursion way. We also can have clues that free energy

has a close relation to modular forms by doing these calculations. I’m sorry that due to

conventions of different models are different, as historical and convenience reasons, that

notation of some basic variable may be different in follow subsections, please be careful.

3.2.1 The Z2 ⊗ Z3 orbifold

Z2⊗Z3 is a result of dividing T 2×T 2×T 2, with each torus having a Z3 symmetry, by the

discrete group generated by

g = diag(1, ω, ω2) h = diag(ω, ω2, 1) (3.33)

this model has 3 Kähler moduli (every torus has one of them), but no complex moduli, it’s

a rigid orbifold. The Euler characteristic is χ = 168. The Kähler potential is

e−K(τa,τ̄a) = i
3∏

a=1

(τa − τ̄a) (3.34)
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we can compute

Gab̄ = − δab
(τa − τ̄a)2

F1 = −κ
∑
a

ln(τa − τ̄a)|η2(τa)|2 (3.35)

where κ = 4, because of strong symmetry here, we can obtain

Sab = −

(
1

(τc − τ̄c)
+ 2

η
′
(τc)

η(τc)

)

Sa =

(
1

(τb − τ̄b)
+ 2

η
′
(τb)

η(τb)

)(
1

(τc − τ̄c)
+ 2

η
′
(τc)

η(τc)

)

S = −
∏
a

(
1

(τa − τ̄a)
+ 2

η
′
(τa)

η(τa)

)
(3.36)

we give a short remark of obtaining these propagators, take Sab as example. From equation

∂̄cS
ab = − 1

(τc − τ̄c)2
(3.37)

integrating results

Sab = − 1

(τc − τ̄c)
+ f(τc) (3.38)

and the condition of modular invaiance fixes f(τ) = 2η
′
(τ)

η(τ) . Using HAE,

∂̄aF2 = −1

2

1

(τa− τ̄a)2
∂bF1∂cF1 (3.39)

and this is integrated

F2 =
1

2κ

∏
a

∂aF1 =
κ2

2

∏
a

(
1

(τa − τ̄a)
+ 2

η
′
(τa)

η(τa)

)
(3.40)

For F3, a little more complicate. HAE is given

∂̄aF3 =
1

2

1

(τa − τ̄a)2
[

(
∂b +

2

(τb − τ̄b)

)(
∂c +

2

(τc − τ̄c)

)
F2

+ ∂bF1

(
∂c +

2

(τc − τ̄c)

)
F2 + ∂cF1

(
∂b +

2

(τb − τ̄b)

)
F2] (3.41)

we can see that the holomorphic ambiguity has a contribution of modular form of weight 4

η
′′
(τ)

η(τ)
− 3

(
η
′
(τ)

η(τ)

)2

(3.42)

This phenomenon persists at every genus whenever there is a modular form of appropriate

weight. However people do not know the asymptotic behavior of Fg for this model to fix

all order ambiguity.

– 22 –



3.2.2 First Glance of Quintic

In every topic of mirror symmetry, Quintic appears, so we are about to discuss it again.

We first summarize results of the original BCOV paper, which calculated the free energy

of Quintic to g = 4. Then I will probably summarize contributions of [3], which calculated

the quintic model to g = 51, in the next section.

The Quintic has 101 complex moduli and 1 Kähler moduli, the complex moduli can

be thought as coefficients of the polynomial and the Kähler moduli can be thought as the

Kähler class of P4, we use its mirror to calculate HAE. Explicitly,

W (xi) =
∑
i

x5i − 5ψx0x1x2x3x4 = 0 (3.43)

the holomorphic three form is

Ω = 5ψ
x4dx0dx1dx2
∂W/∂x3

(3.44)

the Yukawa coupling is

Cψψψ = −
∫

Ω ∧ ∂3Ω

∂ψ3
=

(
2πi

5

)3 5ψ2

1− ψ5
(3.45)

as ψ → 0 the Kähler potential diverges( in a |ψ|2 behavior) but the metric remains finite,

cosidering the invariant combination eK |f |2 and Gψψ̄|v|2, the regularity condition at the

origin implies that f should has a zero at ψ = 0 while v remains finite,also there is no any

additional singularities except ψ → ∞ and ψ → 1 so we have ansatz

f(ψ) = ψ(1− ψ5)a v(ψ) = (1− ψ5)b (3.46)

where a and b are some constants. Plug this analysis to 3.31 we know that ψ → 0 the

propagators behaves like

Sψψ
(
∂

∂ψ

)2

∼ ψ2

(
∂

∂ψ

)2

Sψ
∂

∂ψ
∼ ψ

∂

∂ψ
S ∼ const (3.47)

We know that ψ → 1 is the conifold point, a good frame is the canonical coordinate

t ∼ − ln(1− ψ5) (3.48)

we can deduce

Cttt ∼ (1− ψ5)2 (3.49)

there is a gap condition here

Fg ∼
[
∂3tCttt

]2g−2

[∂tCttt]
3g−3 ∼ ag

(1− ψ5)2g−2
(3.50)

more carefully analysis gives

Fg ∼
A2g−2

(1− ψ5)2g−2

((
2πi

5

)3

ϖ0(ψ)

)2g−2

(3.51)
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where An comes from general form of Holomorphic Ambiguity

fg(ψ) =

2g−2∑
g=0

Ag
(1− ψ5)2g−2

(3.52)

We can also find the expression of Kähler potential in the large ψ̄ limit, where

Gψψdψ̄ = C
dt

dψ

dψ̄

ψ̄2
+ o(ψ̄−3)

K(ψ, ψ̄) = − lnϖ0(ψ) + o(ψ̄−1) (3.53)

where C is some const and ϖ0(ψ) is the solution of Picard-Fuchs equation, inserting this

results

Sψψ =

(
5

2πi

)3 1− ψ5

5ψ2
∂ψ ln

(
dt

dψ
v

(
f

ϖ0

)2
)

Sψ =

(
5

2πi

)3 1− ψ5

5ψ2

[
(∂ψ ln(f/ϖ0))

2 + v−1∂ψv∂ψ ln(f/ϖ0)
]

S =

[
Sψ − 1

2
DψS

ψψ − 1

2
(Sψψ)2Cψψψ

]
∂ψ ln(f/ϖ0) +

1

2
DψS

ψ +
1

2
SψψSψCψψψ (3.54)

the genus 2 free energy

F2 =

(
1

2
SψψC1

ψψ +
1

2
C1
ψS

ψψC1
ψ − 1

8
SψψSψψCψψψψ + · · ·

)
+ f(ψ) (3.55)

where general form of holomorphic ambiguity is given by

f(ψ) = A+
B

(1− ψ5)
+

C

(1− ψ5)2
(3.56)

this reproduce the A model free energy if we transform into canonical coordinate

F2(q) = − 5

144
+

1

240

∞∑
n

dnq
n

(1− qn)2
+
∑
r

Drq
r (3.57)

where dn, Dn has the meaning of Gromov-Witten invariants, counts the number of holo-

morphic rational curves of degree of degree n and genus 2. The ambiguity constants are

fixed by instanton expansion, for genus 2 this is not hard because A model consideration

implies there are no genuine genus 2 curve of degree below 3 so contribution from degree

below 3 comes entirely from the bubbling of the sphere or a torus. Eventually we have

A = −71375

288
B = −10375

288
C =

625

48
(3.58)

3.2.3 Simple Example From Mirror Curve: Local P2

In this and next section we actually calculate the refined Free Energy which is a generalized

form of free energy, one may first read the contents of refined B model in the next section.
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The mirror curve is a expression of toric Calabi-Yau variety, we first recall it quickly.

We know that the toric variety is defined by M = Ck+3−Z
G , specified by k charge vectors

Qα ∈ Zk+3 satisfying the Calabi-Yau condition. In B model side, we can introduce two C
valued coordinate w+, w− as well as homogeneous coordinate xi := eyi constrained by

(−1)Q
α
0

k+3∏
i=1

x
Qα

i
i = zα (3.59)

and the local mirror geometry is then defined by

w+w− = H =

k+3∑
i=1

xi (3.60)

makes a conical bundle over a family of Riemann surfaces, and zαs are complex moduli

introduced naturally, the canonical three form is

Ω =
dHdxdy

Hxy
(3.61)

and it was noticed that this has a strong connection with the Seiberg-Witten model, where

the theory is also defined by a Riemann surface (the Seiberg-Witten curve). This is quite

simple but strong for genus one mirror curve, since it has only one complex moduli, the

direct integration is discovered by [4]. And 15 years later the direct integration for genus

2 mirror curve is proposed by [5], which we maybe will see in the next subsubsection.

The direct integration of mirror curves successfully used the properties of modular

forms, which some of them we recalled in the appendix. We can obtain the A-period in a

similar way as Seiberg-Witten theory

dt

du
=

√
E4(τ)g3(u,mi)

E6(τ)g2(u,mi)
(3.62)

and due to the definition of refined free energy, we can compute the free energies at genus

one

F (1,0) =
1

24
ln

∆
∏
j

ua
∏
j

m
bj
j


F (0,1) =

1

2
ln

(
∆a
∏
i

uaim
bj
j |g

−1
ij̄

|

)
(3.63)

due to the A period we can also calculate the prepotential and the B period

∂2F (0,0)

∂t2
= − c20

2πi
τ (3.64)

and the propagator is

Stt = c20
12
E2(τ) (3.65)
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where c0 is the intersection number of the A-cycle and the B-cycle.

We can now zoom into the case of local P2, as the coordinates and constrain is

X0 = uxyw X1 = x2y X2 = wy2 X3 = w2x

z =
X1X2X3

X3
0

u−3 = z (3.66)

the mirror curve is given (in Weierstrass form)

y2 = 4x3 − 1

12
(1 + 24z)x− 1

216
(1 + 36z + 216z2) (3.67)

one calculate the mirror map by the inversion of j function

q(z) = −z3 + 45z4 − 1512z5 + 45672z6 + · · · (3.68)

and A period

t = ln(z)− 6z + 45z2 − 560z3 + · · · (3.69)

B period

tD = −1

6
(ln z)2 +

1

3
XA ln(z)− 3z +

141

4
z2 +

1486

3
z3 + · · · (3.70)

We can calculate the Yukawa coupling

Czzz = −1

3

1

z3(1 + 27z)
(3.71)

and the propagator

Szz =
3

4
z2 + 9z3 − 54z4 + 756z5 + · · · (3.72)

by inputing the prepotential and genus 1 free energy, we can solve the HAE to arbitrary

genus, and it is known that the holomorphic ambiguity can be fixed by the gap condition.

Which can be calculated explicitly, the first result is given by [6], stating

A
(g)
2g−2 =

B2g

2g(2g − 2)
(3.73)

3.2.4 Genus 2 mirror curve and the C3/Z5 model

We shortly summarize the direct integration of genus 2 mirror curve’s HAE discovered by

[5]. We know that it is quite hard to do HAE calculation for general number of complex

moduli, since the number of propagators grows factorial. But for cases like mirror curve,

we can get strong results from modular forms.

Generally, the mirror curve is by doing Fourier Expansion for Igusa invariants, which

is super complicated, at last We can get the τ matrix τij , which is used to compute the

genus one free energy, which has the same form of genus one case, and the propagators

Sij = 1

2πi

1

10
∂τpq ln(χ10)C

i
pC

j
q (3.74)
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From the PF equation, we know the A period, which we can use to compute the prepotential

(where C is the intersection matrix)

τij = −Cki C lj
∂2F (0,0)

∂tk∂tl
(3.75)

and the B period

tiD = Cij
F (0,0)

∂tj
(3.76)

We now zoom into the explicit model, the mirror curve takes the form

y2 = −4x5+z
−4/5
1 z

−2/5
2 x4+2z

−3/5
1 z

−4/5
2 x3+(1+2z2)z

−2/5
1 z

−6/5
2 x2+2z

−1/5
1 z

−3/5
2 x+1 (3.77)

and the igusa invariant is calculated

Figure 12.

using the intersection matrix (
−3 1

1 −2

)
(3.78)

we can get the Yukawa Couplings

Cz1z1z1 =
−2 + 9z1 − 16z2 − 95z1z2 + 32z22 + 300z1z

2
2

5z31∆

Cz1z1z2 =
−1 + 27z1 − 8z2 − 210z1z2 + 16z22 + 400z1z

2
2

5z21z2∆

Cz1z2z2 =
−3 + 81z1 − 14z2 − 405z1z2 + 8z22 + 325z1z

2
2

5z1z22∆

Cz2z2z2 =
−9 + 243z1 − 17z2 − 540z1z2 + 4z22 + 225z1z

2
2

5z32∆
(3.79)

and the propagators for further integration

Sz1z1 =
7

10
z21 + 9z31 −

3

10
z21z2 − 54z41 − 6z31z2 + · · ·

Sz1z2 = − 3

20
z1z2 − 3z21z2 +

3

5
z1z

2
2 + 18z31z2 + 7z21z

2
2 + · · ·

Sz2z2 =
3

10
z22 + z1z

2
2 −

6

5
z32 − 6z21z

2
2 − 4z1z

3
2 + · · · (3.80)
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the ambiguities are fixed at conifold point (3,−2/9).We end this section by the general

procedure of doing direct integral of genus 1 and 2 curve, which are as follow, this graph

is from [5], where (2.55), (2.65) are refined HAE.
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Figure 13.
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Figure 14.
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4 Other Aspects of Holomorphic Anomaly Equation

4.1 Discussion of the Holomorphic Ambiguity

4.1.1 General Ansatz

Though direct integration of the Holomorphic Anomaly Equation results a Holomorphic

Ambiguity, but this ambiguity is not unconstrained. Since the total F (g) have a quite

restricted pole and regularity structure at the critical divisors of Mcs, most notably at

each conifold divisor there is in the local transversal coordinate tc a pole of order t2−2g
c

and regularity in the sub-leading terms in the F (g). There are also many other types of

singularities in generic multi parameter models.

We generally have an ansatz for holomorphic ambiguities in view of the conifold sin-

gularities

fg(z) =
D∑
i=1

t(i)∑
k=0

p
(k)
i (z)

∆k
i

(4.1)

where D is the number of components ∆i of the discriminant and t(i) gives the maximal

singularity that one has at the corresponding type of divisor, which is

t(i) = 2g − 2 (4.2)

for conifold divisors. If in the large complex structure variables the point zi → ∞ is regular

the p
(k)
i (z) are polynomials which degrees are bounded by specific models.

4.1.2 Boundary condition from light BPS states

Boundaries in the moduli space correspond to degenerations of the manifold and general

properties of the effective action can be inferred from the physics of the lightest states.

More precisely the light states relevant to the Fg terms are BPS states. It’s convenient to

see this in F1, at the point of maximal unipotent monodromy in the mirror manifold W ,

the Kähler volume of the original manifold is large so the lightest string states are constant

maps

Σg → pt. ∈M (4.3)

the corresponding F1 is

F1 =
ti
24

∫
c2 ∧ Ji +O(e2πit) (4.4)

where Ji is the basis for the Kähler cone dual to two cycles. And at the conifold point, W

has a nodal singularity with S3 topology and

F1 =
1

12
ln tD +O(tD) (4.5)

which is physically explained as the effect of integrating out a non-perturbative hypermul-

tiplet namely the extremal black hole with mass∼ tD, whom goes to zero at the conifold

and it couples to the U(1) vector in the N = 2 vectormultiplet, whose lowest component

is the modulus tD.
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The free energy gives a term

SN=2
1−loop =

∫
d4xR2

+F (gs, t) (4.6)

in N = 2 supergravity, where R+ is the self dual part of the curvature. This term is com-

puted by a one-loop integral [9] in a constant graviphoton background, which depends only

on the left Lorentz quantum number of BPS particles, which is very similar to the normal

Schwinger loop calculation, the latter computes the one-loop effective action in QED, which

comes from integrating out massive particles coupling to a constant background photon.

We first revisit the QED case, for a self-dual background field F12 = F34 = F , one has

SS1−loop = ln det(∇+m2 + 2eσLF ) =

∫ ∞

ϵ

ds

s

Tr(−1)fexp(−sm2)exp(−2seσLF )

4sin2(seF/2)
(4.7)

where (−1)f depends on the massive particle is boson or fermion, and σL is the Cartan

element in the left Lorentz representation of the particle.

Then we zoom into the N = 2 SUGRA case, the graviphoton field couples to the mass,

the loop has two R+ and arbitrary graviphoton insertions, only BPS state with the Lorentz

quantum number [
(
1

2
, 0) + 2(0, 0)

]
⊗R (4.8)

(for R an arbitrary representation of SO(4)) contributes to the loop. Microscopic BPS

states in this loop is related to non-perturbative RR states which are the only charged

states in the Type II compactification, comes from ranes wrapping cycles in the Calabi-Yau,

and as BPS states their masses are proportional to their central charge. In the IIB picture,

it was checked with the beta function in [10] there is precisely one BPS hypermultiplet

with the specific Lorentz representation becoming massless at the conifold. In this case the

Schwinger-Loop calculation simply becomes

F (gs, tD) =

∫ ∞

ϵ

ds

s

exp(−stD)
4sin2(sgs/2)

+O(1) =
∞∑
g=2

(
gs
tD

)2g−2 (−1)g−1B2g

2g(2g − 2)
+O(1) (4.9)

which is the gap condition.

4.1.3 Second Glance of Quintic

We can now look how [3] successfully calculated the quintic to g = 51 with the holomorphic

ambiguity fixed. For simplicity, the convention of quintic is

W =
5∑
i

x5i − 5ψ
1
5x1x2x3x4x5 = 0 (4.10)

here, after the calculation of Picard-Fuchs equation, we get the prepotential and the B

period and the Yukawa coupling

Cψψψ =
ψ−1

1− ψ
(4.11)
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at the large radius point, we can solve the Picard-Fuchs equation and use them as basis to

treat the prepotential and other symplectic basis results

Π =


F0

F1

X0

X1

 =


∫
B1

Ω∫
B2

Ω∫
A1 Ω∫
A2 Ω

 = ω0


2F (0) − t∂tF (0)

∂tF (0)

1

t

 =


ω3 + cω1 + eω0

−ω2 − aω1 + cω0

ω0

ω1

 (4.12)

From special geometry we also have the Zamolodichikov metric Gψψ̄. One key observation

of [3], which origins from [11] is to introduce the following variables

Ap :=
(ψ∂ψ)

pGψψ̄
Gψψ̄

Bp :=
(ψ∂ψ)

pe−K

e−K

C := Cψψψψ
3 X =

1

1− ψ
(4.13)

and introduce

Pg = Cg−1Fg P (n)
g = Cg−1ψnC

(g)
ψn (4.14)

a very important result is discovered by defining the variables (u, v1, v2, v3, X) in these

implicit equations.

B = u A = v1 − 1− 2u B2 = v2 + uv1

B3 = v3 − uv2 + uv1X − 2

5
uX (4.15)

and every Pg is a degree 3g − 3 inhomogenenous polynomial of v1, v2, v3, X, where one as-

signs the degree 1, 2, 3, 1 for v1, v2, v3, X respectively, this greatly simplifies the calculation.

The HAE is expressed as

∂Pg
∂u

= 0(
∂

∂v1
− u

∂

∂v2
− u(u+X)

∂

∂v3

)
Pg = −1

2

(
P

(2)
g−1 +

g−1∑
r=1

P (1)
r P

(1)
g−r

)
(4.16)

this also has a holomorphic ambiguity

Pg = Pg(v1, v2, v3, X) + f (g)(X) (4.17)

where

f (g) =

3g−3∑
i=0

aiX
i (4.18)

and the 3g − 2 coefficients are fixed by the gap condition around the orbifold point ψ → 0

and the conifold point ψ → 1, the constant term is fixed by the leading coefficients in large

complex structure modulus limit ψ → ∞, we use

lim
t→∞

FA−model,g =
(−1)g−1B2gB2g−2

2g(2g − 2)(2g − 2)!

χ

2
(4.19)
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to fix this.So there are still 3g − 3 left for gap condition.

We first see the result around the orbifold point,it is argued that free energy should be

analytic at the orbifold point, as there are no massless BPS states so the singularity is not

because geometric reasons(so it is not really a ordinary ”gap” ). Picard-Fuchs equation

enjoys 4 different power series solution here

ωorbk = ψ
k
5

∞∑
n=0

([
k
5

]
n

)5
[k]5n

(55ψ)n, k = 1, · · · , 4 (4.20)

then we need to find the basis and Kähler potential besides the orbifold point to define

the appropriate coordinate, the method is by doing analytic continuation of the Π and

represent it using ωorbk
F0

F1

X0

X1

 = ψ1/5αΓ
5(15)

(2πi)4


(1− α)(α− 1− α2)
1
5(8− 3α)(1− α)2

(1− α+ α2)
1
5(1− α)3

+O(ψ2/5) (4.21)

where α = exp(2πi5 ). The appropriate coordinate is

s =
ωorb2

ωorb1

(4.22)

integrating the HAE with the condition and expand the free energies in s, the analytic

constrains is equivalent to the regularity of

Pg

ψ
3
5
(g−1)

(4.23)

which impose [
3(g − 1)

5

]
(4.24)

constrains.

About the conifold point, the fixing is direct, also begins with the solution of Picard-

Fuchs

Πc =


ωc0
ωc1
ωc2
ωc3

 =


1 + 2δ3

625 − 83δ4

18750 + 757δ5

156250 +O
(
δ6
)

δ − 3δ2

10 + 11δ3

25 − 217δ4

2500 + 889δ5

15625 +O
(
δ6
)

δ2 − 23δ3

30 + 1049δ4

1800 − 34343δ5

75000 +O
(
δ6
)

ωc1 log(δ)− 9d2

20 − 169d3

450 + 27007d4

90000 − 152517d5

625000 +O
(
δ6
)
 (4.25)

where δ = ψ − 1 and the appropriate value of coordinate is

t̂D =
ωc1
ωc0

(4.26)
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and all free energies can be changed as t̂D variable functions

F
(0)
conf. = −5

2
log
(
t̂D
)
t̂2D +

5

12
(1− 6b1) t̂

3
D +

(
5

12
(b1 − 3b2)−

89

1440
− 5

4
b21

)
t̂4D +O

(
t̂5D
)

F
(1)
conf. = −

log
(
t̂D
)

12
+

(
233

120
− 113b1

12

)
t̂D +

(
233b1
120

− 113b21
24

− 107b2
12

− 2681

7200

)
t̂2D +O

(
t̂3D
)

F
(2)
conf. =

1

240t̂2D
−
(
120373

72000
+

11413b2
144

)
+

(
107369

150000
− 120373b1

36000
+

23533b2
720

− 11413b1b2
72

)
t̂D +O

(
t̂2D
)

(4.27)

the gap condition is

F
(g)
conifold ∼

(−1)g−1B2g

2g(2g − 2)t̂2g−2
D

(4.28)

this condition fixes 2g − 2 coefficients. However

3g − 2− (1 +

[
3(g − 1)

5

]
+ (2g − 2)) =

[
2g − 2

5

]
(4.29)

so only g = 2, 3 this works. How about the other coefficients? It is proved in [9] and [12]

that there is a algorithm to calculate the GV invariants directly by cohomologu of the

moduli space of D2 − D0 brane system, this is quite hard so we do not give a summary

here. Using this result, [3] gives the calculation to g = 51.

4.2 Short review of Refined Holomorphic Anomaly Equation

Inspired by Nekrasov’s Instanton Counting Algorithm, people developed Refined Topolog-

ical string theory. Later, people realized that Holomorphic Anomaly Equation can be also

generalized to Refined Topological String, which is introduced in [8][7].

The refined partition function is directly introduce as

lnZ(t,m, ϵ1, ϵ2) =
∞∑

n,g=0

(ϵ1 + ϵ2)
n(ϵ1ϵ2)

g−1F (n
2
,g)(t,m) (4.30)

which is quite similar to the equivariant instanton partition function of N = 2 gauge

theories, in which t is flat coordinates on the vector multiplet moduli space, m is the bare

hyper multiplet masses and ϵ1, ϵ2 are the equivariant rotation parameter acting on the so

called Ω background, which is parameterized by s := (ϵ1 + ϵ2)
2. the refined free energies

satisfy for g1 + g2 ≥ 2 a generalized holomorphic anomaly equation

∂̄īF
(g1,g2) =

1

2
C̄jk
ī

(
DjDkF

(g1,g2−1) +

′∑
r1,r2

DjF
(r1,r2)DkF

(g1−r1,g2−r2)

)
(4.31)

where the prime denotes that the sum over r1, r2 does not include (r1, r2) = (0, 0), (g1, g2).

We can observe that this refined HAE reduced to ordinary HAE when g1 = 0. One might be

curious that what is the worldsheet description of refined Holomorphic Anomaly Equation,

but so far the answer is still unknown, it was conjectured that

F (n,g) =

∫
Mg

⟨On
3g−3∏
k=1

βkβ̄k⟩gdm ∧ dm̄ (4.32)
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for some specific operator O which we still don’t know. For some special cases the free

energy can be given explicitly, such as

F (n+1,0) = ⟨ϕ(0)(0)ϕ(0)(1)ϕ(0)(∞)On⟩g=0

F (1,0) =
1

24
ln

∆
∏
j

ua
∏
j

m
bj
j


F (0,1) =

1

2
ln

(
∆a
∏
i

uaim
bj
j |g

−1
ij̄

|

)
(4.33)

for integration of the refined HAE, people introduce propagators that has a quite simple

form

∂̄īF
(n,g) = Cjk

ī

∂F (n,g)

∂Sjk
(4.34)

which implies that F (n,g) is a polynomial of Sij of degree 3(g + n) − 3. The propagators

are overdetermined by a series of equations which is determined by special geometry

DiS
kl = −CimnSkmSlm + fkli

Γkij = −CijlSkl + f̃kli

∂iF
(0,1) =

1

2
CijkS

jk +Ai

(4.35)

the gap condition comes from Schwinger Loop computation near the conifold point

F(s, gs, t) =

∫ ∞

0

ds

s

exp(−st)
4sinh(sϵ1/2)sinh(sϵ2/2)

+O(1)

=

[
− 1

12
+

1

24
(ϵ1 + ϵ2)

2(ϵ1ϵ2)
−1

]
ln(t) +

1

ϵ1ϵ2

∞∑
g=0

(2g − 3)!

t2g−2

g∑
m=0

B̂2gB̂2g−2ϵ
2g−2m
1 ϵ2m2 + · · ·

(4.36)

for B̂m =
(

1
2m−1 − 1

)
Bm
m!
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A Riemann Surface Moduli

We super shortly revise some conclusions about moduli of Riemann Surfaces, for people

who almost forget everything about it, like me.

First, definition. Mg,n is a set of isomorphism classes of genus g and n marked points.

Mg,n = {Riemann surfaces with (g, n)} /iso. (A.1)

where the isomorphism is a biholomorphism that maps marked points to marked points.

Shape, Hurwitz’s theorem states that the isomorphism group of any Riemann surface

satisfying 2g − 2 + n > 0 is finite, this type of Riemann surfaces is named stable. Almost

all of our discussion is in this part, for it actually exclude only 4 possible trivial cases. And

all other moduli spaces are connected, smooth, complex orbifold of dimension

dim(Mg,n) = 3g − 3 + n (A.2)

and Harer-Zagier find its Euler characteristic number

χ(Mg,n) = (1− 2g)n−1ζ(1− 2g) (A.3)

In two dimension, the conformal transformation are equivalent to holomorphic transfor-

mations, so a tangent vector of the moduli space is an infinitesimal change of complex

structure,which is parameterized by the Beltrami Differential

dz → dz + ϵµzz̄dz̄ (A.4)

B Special Geometry

We start with elements of the theory, which apply to the complex moduli spaces of Calabi-

Yau spaces of any dimensions namely the Weil-Petersson metric on the complex moduli

space Mcs ,exists since the Tian-Todorov theorem the moduli space of Calabi-Yau mani-

folds is unobstructed. The Kähler potential

e−K = in
2⟨Ωn, Ω̄n⟩ (B.1)

We have Griffith transeversality

∂iΩn = αi(z)Ωn + χi = Hn,0 ⊕Hn−1,1 (B.2)

With the notation

αi(z) = −Ki = −∂iK (B.3)

we have results

−Kie
−K = αie

−K

DiΩn := (∂i +Ki)Ωn := χi ∈ Hn−1,1

D̄īΩ̄n := (∂̄ī +Kī)Ω̄n := χ̄i (B.4)
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second line as the basis of deformation space of complex structure.We also know there is a

gauge transformation for the nonvanishing form

Ω(z) → ef(z)Ω(z) (B.5)

the Kähler form transforms then in the Kähler line bundle with Kähler transformations

K(z, z̄) → K(z, z̄)− f(z)− f̄(z̄) (B.6)

where e−K is a section of L⊗ L̄ ,this gauge transform generates a natural connection. We

end with the correlation function here is purely holomorphic

⟨Di1 · · ·DirΩn,Ωn⟩ = ⟨∂i1 · · · ∂ırΩn,Ωn⟩ (B.7)

this is because other deformed terms can’t survives the matching. So non-stringy cases,

we have

∂̄īCi1···ir = 0 (B.8)

C Modular Forms

Any genus one curve can be represented in Weierstrass normal form

y2 = 4x3 − g2(u,mi)x− g3(u,mi) (C.1)

where u is the true modulus or the curve which corresponds to the complex structure

modulus and mi denote possible isomonodromic deformations. The coefficents enjoys a

rescaling symmetry and exists an r that rescales them to the Eisenstein Series.

g2 → r4g2 g3 → r6g3

E4 = 12r4g2 E6 = 216r6g3 ∆mod = r12∆dis

∆mod =
1

1728
(E3

4(τ)− E3
6(τ)) ∆dis = g32(u,mi)− 27g23(u,mi) (C.2)

and the associated j function is

j =
E3

4(τ)

E3
4(τ)− E2

6(τ)
=

1

q
+ 744 + 196884q + · · · (C.3)

Any genus two curve can be represented as hyperelliptic curve

y2 = v0x
6 − v1x

5 + v2x
4 − v3x

3 + v4x
2 − v5x+ v6 =

6∏
i=1

(x− λi) (C.4)

just like the invariants for g = 1, we also have invariants for g = 2, and I’m not going to

type them here, I just paste the graph here.
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Figure 15.

which are called Igusa invariants.
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